Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

566 results about "Extreme temperature" patented technology

Heat resistant and fire retardant materials and methods for preparing same

A silica cement blend having an insulating, fire retarding and high temperature characteristic capable of withstanding temperatures ranging from ambient to greater than 40000 F without degradation of the concrete structure. In addition to its high temperature capabilities the blend can be produced as ultra light weight to heavy weight concrete. The silica based mixture when added to cementitious materials such as Portland cement, Class C Fly Ash, silica fume and other cementitious materials. Presented also are methods for reducing fire damage by coating interior / exterior walls, ceiling, and roofs of a building with a water based latex coating containing a fire retardant material and low heat conductivity silicas. Methods for painting internal / external walls, ceilings, and roof are also presented. This coating retains thermal blocking properties comprised of processed, expanded and / or finely milled, pyrogenic silicas and micro spheres in combination of but not limited to, one, two or more component water based polymer / copolymer latex binders and a water born fluoropolymer emulsion. The combined properties of these elements create a coating similar to paint with a high level of thermatic resistance which slows the composition break-down from fire, extreme temperatures, and restricts the thermal conductivity which helps to preserve the integrity of the substructure or underlying materials. The properties of this coating reduce or slow the potential of catastrophic fire by retarding flashover and protecting the under structure; which in turn assist fire fighters and rescue personnel by helping to retard the potential of a catastrophic fire.
Owner:SPECIALTY CONCRETE DESIGN

Ultrasonic oil/water tank level monitor having wireless transmission means

An ultrasonic monitor to measure the level of a fluid (e.g., oil or water) within a storage tank. The ultrasonic monitor is surrounded by a gas-tight, explosion-proof casing that is coupled to the top of the tank so that the acoustic axis of a (e.g., 59 KHz) ultrasonic transducer is directed downwardly towards the surface of the fluid. The ultrasonic transducer is encased within a protective (e.g., Delrin) housing so as to resist the hostile (e.g., acidic, gaseous vapors and extreme temperature) conditions within the tank. A main CPU is interconnected between the ultrasonic transducer and an RF transceiver having an antenna from which fluid level data calculated by the main CPU can be transmitted over a wireless communication path. A reference rod having at least one acoustic reflector located at a known distance therealong extends downwardly from the housing of the ultrasonic transducer towards the surface of the fluid. The main CPU is responsive to the time of flight between incident signals generated by the acoustic transducer and return and echo signals reflected off the surface of the fluid and the acoustic reflector for calculating the corresponding distance between the fluid and the transducer. The main CPU is adapted to adjust the time of flight to compensate for errors introduced by the environment (e.g, gas vapors, pressure, etc.) of the tank depending upon the echo signal that is reflected to the acoustic transducer by the reflector of the reference rod.
Owner:OLEUMTECH CORP

Heat resistant and fire retardant materials and methods for preparing same

A silica cement blend having an insulating, fire retarding and high temperature characteristic capable of withstanding temperatures ranging from ambient to greater than 40000 F without degradation of the concrete structure. In addition to its high temperature capabilities the blend can be produced as ultra light weight to heavy weight concrete. The silica based mixture when added to cementitious materials such as Portland cement, Class C Fly Ash, silica fume and other cementitious materials. Presented also are methods for reducing fire damage by coating interior/exterior walls, ceiling, and roofs of a building with a water based latex coating containing a fire retardant material and low heat conductivity silicas. Methods for painting internal/external walls, ceilings, and roof are also presented. This coating retains thermal blocking properties comprised of processed, expanded and/or finely milled, pyrogenic silicas and micro spheres in combination of but not limited to, one, two or more component water based polymer/copolymer latex binders and a water born fluoropolymer emulsion. The combined properties of these elements create a coating similar to paint with a high level of thermatic resistance which slows the composition break-down from fire, extreme temperatures, and restricts the thermal conductivity which helps to preserve the integrity of the substructure or underlying materials. The properties of this coating reduce or slow the potential of catastrophic fire by retarding flashover and protecting the under structure; which in turn assist fire fighters and rescue personnel by helping to retard the potential of a catastrophic fire.
Owner:SPECIALTY CONCRETE DESIGN

Transport Container

The present invention relates to a transport container which provides mechanical and thermal stability for a load and which container is fabricated as the container is loaded. In particular, the present invention relates to a container which can be readily transported on aircraft, such as an aircraft container. In the field of logistics, that is the field of movement and supply of produce and materials, in particular in the transport of intermediate and finished products, containers have been developed which safely protect from physical damage a wide variety of product. Food and pharmaceutical products not only need protection from physical shock and pressures but also require temperature stability during transportation; otherwise goods can be damaged and be unusable, whether such damage is apparent or not. However, air transport poses a particular problem: Goods can be transported in tropical heat, packaged and placed upon pallets and the like containers whereby they are presented in aircraft style containers. Such goods may be left on runways at extreme temperatures (+40° C.) and then placed within a hold where low pressures and low temperatures exist during flight. At a destination airport the temperatures may well be sub-zero. To simplify transport with respect to airports, planes and handling equipment, there have been developed aircraft Unit Load Devices (ULDs) which comprise any type of pallet or container that can easily be loaded to the aircraft by a ground handler. The present invention seeks to provide a transport container which can maintain goods within a narrow temperature range, can displace a considerably reduced volume before erection, is economical to manufacture, can readily and easily be constructed. The present invention further seeks to provide a transport container which is compatible with standard Unit Load Device specifications.
Owner:SOFTBOX SYST LTD

Method for preparing zirconium oxide refractory fibre

The present invention provides a method for preparing a zirconium oxide refractory fiber. The method adopts zirconium oxychloride, aqueous hydrogen peroxide solution, yttrium chloride or yttrium nitrate as raw material, the inorganic zirconium spinnable glue solution is made by reaction and compression, the gelatinous fiber can be obtained by centrifugal fiber forming, and after heat treating sintering the zirconium oxide refractory fiber which has the following advantages can be obtained: crystal phase composition with square phase and/or cubic phase zirconium oxide, purity up to 99.5% above, diameter around 5 mu m, length approximate continuous, soft and flexible property and without slag including sphere. The using temperature of the fiber is above 1600 DEG C, the material can be used as extreme temperature refractory, heat insulation material, protecting material, ablative material, satellite battery separator material and the like, used for the fields of aerospace, war industry and national defense, atomic energy and the like; the fiber can also be used as the flame-proof heat-insulating material of the extraordinary high-temperature electric furnace with temperature 1600 DEG C to 2200 DEG C, the oil or gas burning furnace and other extraordinary high-temperature heating mechanism, and is used for the fields of ceramic sintering, crystal growth, metal smelting, petroleum cracking, scientific researching and the like. The invention totally adopts the inorganic raw material, has the advantages of low cost, no pollution, simple technique and excellent effect.
Owner:山东红阳高温节能材料股份有限公司
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products