Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1861 results about "Substructure" patented technology

Self-assembling modular percutaneous valve and methods of folding, assembly and delivery

The present invention provides a modular prosthetic valve device designed as two or more device modules that may be delivered to a body lumen unassembled and then assembled into the assembled valve device in the body at least in part using a self-assembly member at or near the site of valve implantation. The device modules may include a support structure and a valve module. The valve module may be delivered in an unassembled, folded delivery configuration, and unfolded and assembled into a working configuration via the self-assembly member. In its unassembled form, the valve module may be a single-piece leaflets substructure or a plurality of valve sections. The self-assembly member has a delivery configuration and a preset configuration, and may be triggered to revert to the preset configuration to assemble the valve module. The modular valve device may be folded in a manner not possible with current valve devices, for example, by rolling the unassembled valve module along its circumferential axis in the direction of its height, so that the diameter of the folded valve module may be equivalent to that of one rolled leaflet. This feature of the invention provides a percutaneous valve device having a smaller delivery diameter than pre-assembled valve devices. This in turn permits use of a delivery device of reduced diameter and increases the flexibility of the loaded delivery device compared to percutaneous valve devices in the art. The invention further provides a system for and method of folding and delivering such a modular valve device and assembling it using the self-assembly member, preferably in the body.
Owner:VALVE MEDICAL

Selected processing for non-equilibrium light alloys and products

A new class of light or reactive elements and monophase alpha'-matrix magnesium- and aluminum-based alloys with superior engineering properties, for the latter being based on a homogeneous solute distribution or a corrosion-resistant and metallic shiny surface withstanding aqueous and saline environments and resulting from the control during synthesis of atomic structure over microstructure to net shape of the final product, said alpha'-matrix being retained upon conversion into a cast or wrought form. The manufacture of the materials relies on the control of deposition temperature and in-vacuum consolidation during vapor deposition, on maximized heat transfer or casting pressure during all-liquid processing and on controlled friction and shock power during solid state alloying using a mechanical milling technique. The alloy synthesis is followed by extrusion, rolling, forging, drawing and superplastic forming for which the conditions of mechanical working, thermal exposure and time to transfer corresponding metastable alpha'-matrix phases and microstructure into product form depend on thermal stability and transformation behavior at higher temperatures of said light alloy as well as on the defects inherent to a specific alloy synthesis employed. Alloying additions to the resulting alpha'-monophase matrix include 0.1 to 40 wt. % metalloids or light rare earth or early transition or simple or heavy rare earth metals or a combination thereof. The eventually more complex light alloys are designed to retain the low density and to improve damage tolerance of corresponding base metals and may include an artificial aging upon thermomechanical processing with or without solid solution heat and quench and annealing treatment for a controlled volume fraction and size of solid state precipitates to reinforce alloy film, layer or bulk and resulting surface qualities. Novel processes are employed to spur production and productivity for the new materials.
Owner:HEHMANN FRANZ

Apparatus and methods for semiconductor IC failure detection

An improved voltage contrast test structure is disclosed. In general terms, the test structure can be fabricated in a single photolithography step or with a single reticle or mask. The test structure includes substructures which are designed to have a particular voltage potential pattern during a voltage contrast inspection. For example, when an electron beam is scanned across the test structure, an expected pattern of intensities are produced and imaged as a result of the expected voltage potentials of the test structure. However, when there is an unexpected pattern of voltage potentials present during the voltage contrast inspection, this indicates that a defect is present within the test structure. To produce different voltage potentials, a first set of substructures are coupled to a relatively large conductive structure, such as a large conductive pad, so that the first set of substructures charges more slowly than a second set of substructures that are not coupled to the relatively large conductive structure. Mechanisms for fabricating such a test structure are also disclosed. Additionally, searching mechanisms for quickly locating defects within such a test structure, as well as other types of voltage contrast structures, during a voltage contrast inspection are also provided.
Owner:KLA TENCOR TECH CORP

Apparatus and methods for semiconductor IC failure detection

An improved voltage contrast test structure is disclosed. In general terms, the test structure can be fabricated in a single photolithography step or with a single reticle or mask. The test structure includes substructures which are designed to have a particular voltage potential pattern during a voltage contrast inspection. For example, when an electron beam is scanned across the test structure, an expected pattern of intensities are produced and imaged as a result of the expected voltage potentials of the test structure. However, when there is an unexpected pattern of voltage potentials present during the voltage contrast inspection, this indicates that a defect is present within the test structure. To produce different voltage potentials, a first set of substructures are coupled to a relatively large conductive structure, such as a large conductive pad, so that the first set of substructures charges more slowly than a second set of substructures that are not coupled to the relatively large conductive structure. Mechanisms for fabricating such a test structure are also disclosed. Additionally, searching mechanisms for quickly locating defects within such a test structure, as well as other types of voltage contrast structures, during a voltage contrast inspection are also provided.
Owner:KLA TENCOR TECH CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products