Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

8486 results about "New materials" patented technology

Optimizing performance parameters for switchable polymer dispersed liquid crystal optical elements

InactiveUS6950173B1Reduce smogLimiting operation temperatureNon-linear opticsOptical elementsDisplay deviceEngineering
Described herein are the materials, mechanisms and procedures for optimizing various performance parameters of HPDLC optical devices in order to meet differing performance requirements. These optimization tailoring techniques include control and independent optimization of switchable HPDLC optical devices to meet the demanding requirements of anticipated applications for, inter alia, the telecommunications and display industries. These techniques include optimization of diffraction efficiency, i.e., index modulation, polarization dependence control, haze, cosmetic quality, control of response and relaxation time, voltage driving for on and off switching, and material uniformity. This control and independent optimization tailors properties of switchable HPDLC optical devices according to the specific requirements of the application of the switchable HPDLC optical device. The invention disclosed herein retains the desirable attributes of the multi-functional acrylate system for forming HPDLC optical devices, but adds new materials to the acrylate system and/or new process control to the recording to optimize performance parameters as may be needed for specific applications. This results in high optical quality switchable holograms with good diffraction efficiency and low, stable switching voltage.
Owner:LEIDOS

Selected processing for non-equilibrium light alloys and products

A new class of light or reactive elements and monophase α′-matrix magnesium- and aluminum-based alloys with superior engineering properties, for the latter being based on a homogeneous solute distribution or a corrosion-resistant and metallic shiny surface withstanding aqueous and saline environments and resulting from the control during synthesis of atomic structure over microstructure to net shape of the final product, said α′-matrix being retained upon conversion into a cast or wrought form. The manufacture of the materials relies on the control of deposition temperature and in-vacuum consolidation during vapor deposition, on maximized heat transfer or casting pressure during all-liquid processing and on controlled friction and shock power during solid state alloying using a mechanical milling technique. The alloy synthesis is followed by extrusion, rolling, forging, drawing and superplastic forming for which the conditions of mechanical working, thermal exposure and time to transfer corresponding metastable α′-matrix phases and microstructure into product form depend on thermal stability and transformation behavior at higher temperatures of said light alloy as well as on the defects inherent to a specific alloy synthesis employed. Alloying additions to the resulting α′-monophase matrix include 0.1 to 40 wt. % metalloids or light rare earth or early transition or simple or heavy rare earth metals or a combination thereof. The eventually more complex light alloys are designed to retain the low density and to improve damage tolerance of corresponding base metals and may include an artificial aging upon thermomechanical processing with or without solid solution heat and quench and annealing treatment for a controlled volume fraction and size of solid state precipitates to reinforce alloy film, layer or bulk and resulting surface qualities. Novel processes are employed to spur production and productivity for the new materials.
Owner:HEHMANN FRANZ

High-temperature resistant thermoplastic polyvinyl chloride cable material and preparation method thereof

The invention relates to a high-temperature resistant thermoplastic polyvinyl chloride cable material, belonging to the technical field of new materials. The cable material consists of the following components in parts by weight: 100 parts of polyvinyl chloride, 30-50 parts of modified plasticizer, 10-20 parts of plasticizer, 20-40 parts of modifier, 2-10 parts of flame retardant, 10-30 parts of inorganic filler, 5-15 parts of stabilizer and 1-5 parts of processing aid. A preparation method of the cable material comprises the following steps: weighing the raw materials according to the components and weight parts of the cable material; uniformly mixing the polyvinyl chloride and adding the modified plasticizer and the common plasticizer; heating and stirring and adding other raw materials; discharging from a high mixing machine and feeding into a twin-screw extruder for extrusion and granulation; and performing air cooling to obtain the final product. The cable material has the advantages that the physical property is good, the applicable temperature range is wide, little pollution is caused, the flame retardance is good, the smoke output in combustion is low, the preparation method is simple, and the cost is low.
Owner:江西一舟数据技术有限公司

Controlling haze in holographically polymerized polymer dispersed liquid crystal optical elements

Described herein are the materials, mechanisms and procedures for optimizing various performance parameters of HPDLC optical devices in order to meet differing performance requirements. These optimization tailoring techniques include control and independent optimization of switchable HPDLC optical devices to meet the demanding requirements of anticipated applications for, inter alia, the telecommunications and display industries. These techniques include optimization of diffraction efficiency, i.e., index modulation, polarization dependence control, haze, cosmetic quality, control of response and relaxation time, voltage driving for on and off switching, and material uniformity. This control and independent optimization tailors properties of switchable HPDLC optical devices according to the specific requirements of the application of the switchable HPDLC optical device. The invention disclosed herein retains the desirable attributes of the multi-functional acrylate system for forming HPDLC optical devices, but adds new materials to the acrylate system and / or new process control to the recording to optimize performance parameters as may be needed for specific applications. This results in high optical quality switchable holograms with good diffraction efficiency and low, stable switching voltage.
Owner:LEIDOS

Photocatalytic type self-repairing super-hydrophobic coating and preparation method thereof

The invention belongs to the technical field of new chemical materials and relates to a photocatalytic type self-repairing super-hydrophobic coating and a preparation method thereof. The coating comprises the following materials: 10-50 percent of thermoplastic film-forming resin, 5-20 percent of low-surface energy material, 1-10 percent of photocatalytic active nano particles, 5-40 percent of hydrophobicity nano particles and 20-60 percent of organic solvent. The preparation method comprises the following steps: firstly, allowing nano particles to be subjected to fluorosilane modification to obtain the hydrophobicity nano particles; then, weighing all components of the coating for mixing, and performing high-speed shearing dispersing to obtain the coating provided by the invention. The coating can be applied to the surfaces of base materials such as steel material, aluminium alloy, plastic and composite in the way of brushing, spraying and the like, and a lotus leaf type super-hydrophobic coating can be obtained through drying. The coating can realize super-hydrophobic self-repairing through UV irradiation after being polluted by organic pollutant or subjected to mechanical wear by external forces, so that the coating has extremely good super-hydrophobic performance and perdurability, and the long-term using performance under the outdoor environments is also ensured.
Owner:FUDAN UNIV

Method for preparing metallic organic frame films

The invention belongs to the technical field of novel materials, and relates to a method for preparing metallic organic frame films(MOFs). The method is characterized in that: after a pretreated carrier is modified or not modified and coated or not coated with a crystal seed layer, the low-high temperature crystallization is performed by changing a reaction temperature; by controlling a relative speed between nucleation and crystal growth, a great deal of nuclei are formed on the surface of the carrier at the low-temperature stage, and the nuclei formed at the high-temperature stage are quickly grown; and thus, the metallic organic frame separation film which is dense, continuous, firm, free of cracks and defects and possesses higher separation performance on a micromolecular system is prepared on the carrier. The invention solves the problem that the bonding force between the metallic frame organic matters and the carrier is weak, the problem that the nucleus forming density on the carrier is so low that the continuous dense MOFs film is difficultly formed on the carrier, and provides a method for preparing the metallic organic frame films(MOFs) which are easily operated and controlled, in particular, the metallic organic frame films(MOFs) with the high separation performance prepared on the tube-shaped carrier.
Owner:DALIAN UNIV OF TECH

Method for preparing biocarbon solid acid catalyst and biodiesel

The invention pertains to the new material technical field, and relates to a method for preparing a carbonaceous solid acid catalyst and biodiesel by taking pure natural biological substances as raw materials. The method is characterized by: taking the pure natural and renewable biological substances as the raw materials; adopting the technical route and method of low-temperature carbonization firstly, oxidation secondly and sulfonation then according to the constituent and structural characteristics to prepare the bio-carbonaceous solid acid catalyst; and adopting a continuous rectification-water separating esterification reaction technology to produce the biodiesel by carrying out the catalytic esterification reaction of a free fatty acid or waste oil and short chain alcohol. The raw materials adopted by the invention are rich in resources, low in price, pure natural and renewable, which pertains to waste utilization; the preparation technology is simple with moderate and controllable reaction conditions; the catalyst has the advantages of high activity, good stability, easy recycling and no corrosion to equipment, which is an really environment-friendly catalyst, thus being applicable to the large scale industrial production of the biodiesel. The method can also be applied to a plurality of organic reactions such as alkylation, hydrolysis and hydration, etc.
Owner:DALIAN UNIV OF TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products