Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1692results about "Inorganic material artificial filaments" patented technology

Nanofibers, and apparatus and methods for fabricating nanofibers by reactive electrospinning

Apparatus and methods for fabricating nanofibers by reactive electrospinning are described. An electrospinning process is coupled with an in-line reactor where chemical or photochemical reactions take place. This invention expands the application of the electrospinning and allows the production of nanofibers of crosslinked polymers and other new materials, such as gel nanofibers of ceramic precursors.
Owner:BOARD OF SUPERVISORS OF LOUISIANA STATE UNIV & AGRI & MECHANICAL COLLEGE

High temperature a resistant vitreous inorganic fiber

A low shrinkage, high temperature resistant vitreous inorganic fiber having a use temperature up to at least 1330° C., which maintains mechanical integrity after exposure to the use temperature and which is non-durable in physiological fluids, is prepared by the method of forming a melt with ingredients including greater than 71.25 weight percent silica, 0 to about 20 weight percent magnesia, and about 5 to about 28.55 weight percent of calcia, 0 to about 5 weight percent zirconia, and optionally a viscosity modifier in an amount effective to render the product fiberizable; and producing fibers from the melt.
Owner:UNIFRAX I LLC

Saline soluble inorganic fibers

A method for insulating an article requiring resistance against repeated exposure to temperatures exceeding 900° C. uses saline soluble, non-metallic, amorphous, inorganic oxide, refractory fibrous materials as thermal insulation. The compositions that can be used for that purpose include vitreous fibers based on SiO2, CaO, MgO, and optionally, A2O3.
Owner:THE MORGAN CRUCIBLE CO PLC

Surface modified particulate and sintered or injection molded products

Disclosed are interfacially modified particulate and polymer composite material for use in injection molding processes, such as metal injection molding and additive process such as 3D printing. The composite material is uniquely adapted for powder metallurgy processes. Improved products are provided under process conditions through surface modified powders that are produced by extrusion, injection molding, additive processes such as 3D printing, Press and Sinter, or rapid prototyping.
Owner:TUNDRA COMPOSITES LLC

Saline soluble inorganic fibres

Thermal insulation is provided for use in applications requiring continuous resistance to temperatures of 1260° C. without reaction with alumino-silicate firebricks, the insulation comprises fibers having a composition in wt %65%<SiO2<86%MgO<10%14%<CaO<28%Al2O3<2%ZrO2<3%B2O3<5%P2O5<5%72%<SiO2+ZrO2+B2O3+5*P2O5 95%<SiO2+CaO+MgO+Al2O3+ZrO2+B2O3+P2O5 Addition of elements selected from the group Sc, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y or mixtures thereof improves fiber quality and the strength of blankets made from the fibers.
Owner:THE MORGAN CRUCIBLE CO PLC

Probe structures incorporating nanowhiskers, production methods thereof and methods of forming nanowhiskers

A probe structure for a scanning probe microscope comprises a nanowhisker (16,34) projecting from a free end of an upstanding tip member (4,26), and being formed integrally with the tip member. In another embodiment, a data storage medium comprises an array of nanowhiskers (54), each nanowhisker being formed from magnetic material, the diameter of the nanowhisker being such that a single ferromagnetic domain exists within the nanowhisker, preferably having a diameter not greater than about 25 nm and more preferably not greater than about 10 nm, and a read / write structure comprising the probe structure for injecting a stream of spin-polarised electrons into a selected nanowhisker of the array, either for sensing the direction of magnetisation in the nanowhisker, or for forcing the nanowhisker into a desired direction of magnetisation. When the probe nanowhisker is formed by a VLS process using a catalytic particle melt, the whisker may be formed with a sacrificial segment to allow for removal of the catalytic material by selective etching of the segment.
Owner:QUNANO

Method for producing an electrically conductive yarn, the electrically conductive yarn and use of the electrically conductive yarn

A method for producing an electrically conductive compound yarn. An electrically conductive monofilament metal thread is spun into a compound yarn together with textile fibers. A compound yarn of this type is particularly suitable for producing woven and knit materials.
Owner:SPOERRY 1866 AG

Cnt-infused metal fiber materials and process therefor

A composition includes a carbon nanotube (CNT)-infused metal fiber material which includes a metal fiber material of spoolable dimensions, a barrier coating conformally disposed about the metal fiber material, and carbon nanotubes (CNTs) infused to the metal fiber material. A continuous CNT infusion process includes: (a) disposing a barrier coating and a carbon nanotube (CNT)-forming catalyst on a surface of a metal fiber material of spoolable dimensions; and (b) synthesizing carbon nanotubes on the metal fiber material, thereby forming a carbon nanotube-infused metal fiber material.
Owner:APPL NANOSTRUCTURED SOLUTIONS LLC

Nanofiber and preparation method thereof

A nanofiber, which is prepared by using a fabrication method comprising the steps of spinning a spinning solution prepared by dissolving at least one precursor for metal, metal oxide, or metal complex oxide with a polymer mixture comprising at least two polymers having different molecular weights and glass transition temperatures in a solvent and thermally treating the spun fiber, comprises close-packed nanoparticles of a metal, a metal oxide, a metal complex oxide or a mixture thereof and has excellent structural, thermal, and mechanical stability as well as a uniform fiber-shape.
Owner:KOREA INST OF SCI & TECH

Method for preparing nano ceramic fibers

The invention discloses a method for preparing nano ceramic fibers, which is implemented by the following steps: 1, preparing 3 to 15 volume percent of 10 to 30 nanometer ceramic nanoparticles, 5 to 30 volume percent of spinnable high polymer, 0.5 to 5 volume percent of dispersant and the balance of solvent, wherein the total volume of the raw materials is 100 volume percent; 2, adding the spinnable high polymer into the solvent, heating the mixture in a water bath with magnetic stirring to obtain solution of spinnable high polymer; 3, adding the ceramic nanoparticles and the dispersant into the solution of spinnable high polymer obtained by the step 2, keeping the temperature of the mixture constant in a water bath, performing dispersion and ultrasonic dispersion, and performing swelling at a constant temperature to obtain ceramic nanoparticle / spinnable high polymer / solvent spinning solution; 4, controlling the electrostatic spinning process parameters of the spinning solution obtained by the step 3 to obtain nano fibers; and 5, sintering the nano fibers at 400 to 1,200 DEG C to obtain nano ceramic fibers.
Owner:XIAN UNIV OF TECH

Method for preparing mesoporous silica molecular sieve fiber

The present invention discloses a method for preparing a wide aperture mesoporous silica molecular sieve fiber. An industrialized nonionics or cationic surfactant is adopted as a template. An organic or inorganic silicon source is adopted as a precursor. In the state where various auxiliary reagents, such as inorganic salt, alcohol and the like, are added, the fiber is synthesized through the cooperative assembly between a surface active agent and inorganic species and a hydrothermal treatment process. The mesoporous silica molecular sieve fiber is between 3 and 20 nm in aperture, between 0.3 and 2.5 cm^3 / g in pore volume, and between 600 and 1200 cm^2 / g in specific area. The material is easy to obtain, the technical requirements are comparatively simple, and the operation is feasible. The method has a very wide application range in terms of the preparation of composite fortifying fiber and semiconductor porous nanometer tube and nanometer wire in the fields of nanometer microelectrode and aviation material.
Owner:SHANGHAI INST OF TECH

Method and device to synthesize boron nitride nanotubes and related nanoparticles

Methods and apparatus for producing chemical nanostructures having multiple elements, such as boron and nitride, e.g. boron nitride nanotubes, are disclosed. The method comprises creating a plasma jet, or plume, such as by an arc discharge. The plasma plume is elongated and has a temperature gradient along its length. It extends along its length into a port connector area having ports for introduction of feed materials. The feed materials include the multiple elements, which are introduced separately as fluids or powders at multiple ports along the length of the plasma plume, said ports entering the plasma plume at different temperatures. The method further comprises modifying a temperature at a distal portion of or immediately downstream of said plasma plume; and collecting said chemical nanostructures after said modifying.
Owner:RGT UNIV OF CALIFORNIA

Titanium dioxide nanorod and preparation method thereof

A titanium dioxide nanorod having anisotropy and a preparation method thereof in which, particularly, an ultrafine composite fiber of polymer and titanium dioxide precursor and a single crystal titanium dioxide nanorod using a phase separation are prepared, wherein a mixed solution containing titanium dioxide precursor, polymer which is compatible with the precursor and solvent is prepared, the mixed solution is electrospun to form titanium dioxide polymer composite fiber containing ultrafine fibril structure therein by the phase separation between the titanium dioxide precursor and the polymer, the composite fiber is heat-pressed, and the polymer material is removed from the composite fiber, so as to obtain titanium dioxide nanorod, which can be used as dye-sensitized solar cells, various sensors, and photocatalysts.
Owner:KOREA INST OF SCI & TECH

Continuous aluminium oxide base ceramic fibre preparation method

The invention provides a method for preparing a continuous alumina-based ceramic fiber, which relates to an alumina-based ceramic fiber, in particular to a method for preparing a continuous alumina-based ceramic fiber which takes alumina as a main component and adds a second component as a crystalling phase inhibitor. The invention provides a method for preparing the continuous alumina-based ceramic fiber, which is simple in technique and low in cost. The method comprises the steps: preparing alumina sol; preparing silicon dioxide sol; mixing the alumina sol and the silicon dioxide sol to obtain biphase sol, and adding a spinning addition agent into the biphase sol; condensing the biphase sol added with the addition agent and spinning by a dry method to obtain the gel fiber; pyrolyzing the gel fiber to obtain the ceramic fiber; and sintering the ceramic fiber to obtain the continuous alumina-based ceramic fiber.
Owner:FUJIAN ESTABLISHED YATE TAO CO LTD

Method for producing shaped bodies

The invention relates to a method for producing shaped bodies, especially threads or foils, from at least one polymer of the groups consisting of polysaccharide, polysaccharide derivative or polyvinyl alcohol by forming a solution of the polymer that contains an additive in a solvent containing amine-N-oxide, extruding the solution and precipitating the extrudate by contacting with a coagulant. The invention is characterized in that at least two polymeric solutions are formed. At least one of the two polymeric solutions contains one or more finely distributed additives and the at least two polymeric solutions are simultaneously extruded forming a combined extrudate.
Owner:OSTTHURINGISCHE MATERIALPRUFGES FUR TEXTIL & KUNSTE

Ceramic hollow fibers made from nanomscale powder particles

The invention relates to a method for producing ceramic hollow fibers from nanoscale particles and to hollow fibers produced in such a manner. The inventive method is characterized in that the ceramic material has a solids content of >25% by volume, preferably >30% by volume and is processed by means of extrusion and spinning. The hollow fiber is sintered according to conventional sintering methods. A hollow fiber produced in this manner is used for metal, polymer and ceramic matrix reinforcements, for artificial organs, for microsystems technology components, for fiber optical waveguides, for ceramic membranes, for solid electrolyte in fuel cells (SOFC), for tissue engineering and for producing extremely light ceramic parts, such as heat shields or brake systems, that are subjected to temperature stresses. The inventive ceramic batch can also be processed by means of silk screening whereby resulting in the production of filigree structures over the ceramic silk screening.
Owner:ITN NANOVATION AG

Electrospinning of fine hollow fibers

A method for electrospinning nanofibers having a core-sheath, tubular, or composite structure is disclosed. The process uses a spinneret having first and second capillaries that channel first and second fluids in the spinneret, the second capillary surrounding the first. A high voltage is applied between the spinneret and a spaced conductive collector. In one embodiment, the first fluid is a mineral oil and the second fluid is a polymeric solution that may include a polymer, a catalyst, a solvent, and a sol-gel precursor. The as-spun nanofiber includes an oil core and a composite sheath. The oil may be removed to produce a composite tubular fiber or the polymer and oil may be removed by calcination to produce a ceramic tubular fiber. In other embodiments, miscible fluids are used to produce porous nanofibers, selected additives functionalize the surfaces of the nanofibers and / or conjugated polymers are used.
Owner:UNIV OF WASHINGTON

Method for production of inorganic nanofibres through electrostatic spinning

The present disclosure relates to the production method of inorganic nanofibres through electrostatic spinning of solution, which comprises alkoxide of metal or of semi-metal or of non-metal dissolved in a solvent system on basis of alcohol. The solution is stabilised by chelating agent, which prevents hydrolysis of alkoxide, and after homogenisation it is mixed with solution of poly(vinylpyrrolidone) in alcohol, after then the resultant solution is brought into electrostatic field, in which the electrostatic spinning is running continually, the result of which is production of organic-inorganic nanofibres, which are after then calcinated outside the spinning device in the air atmosphere at the temperature from 500° C. to 1300° C.
Owner:DUCHOSLAV JIRI +1

Method and equipment of preparing high performance zirconium oxide continuous fiber

A process for preparing high-performance continuous fibre of zirconium oxide includes such steps as synthesizing acetylacetone-zirconium polymer as precursor from acetylacetone and zirconium oxychloride as main materials, dissolving in methanol to obtain the spinning solution, drying spinning to obtain continuous fibre of precursor, heat treating in a multifunctional sintering furnace by special atmosphere and high-temp. airflow spraying for stretching. Its advantages are high tensile strength (over 2.6 GPa) and long length up to several kilometers.
Owner:绍兴市圣诺超高温晶体纤维材料有限公司

Zirconium oxide fabrics prepared from organic polyzirconium fore spinning solution by silk process

The manufacture method of a kind of zirconia fibre cotton relates to the field of resistance of fire fibre material. We compose van-style acetamide acetone zirconium polymer according to chloridze zirconia, acetamide acetone and three-ethylamine. We use methanol as the dilute impregnant, we mix round them to let hloridize zirconia, acetamide acetone and three-ethylamine react at 40-20 deg.C, and we can receive poly-acetamide acetone zirconium van-substance. Four-hydrogen furan filtrate and remove the outgrowth hydrochloric three-ethylamine. The offspring dissolve in the filature liquid made of methanol. After centrifugal swing, we can receive van-substance fibre. After we do special hear treatment, the zirconia fibre cotton we receive has the characteristic of good filature ability, high content of zirconium, equality andclarity and jarles capability. It can be used as industrial stove, roomage fusion stove, atomic energy reactor and the high temperature heat insulation material used in aviation and military. The material of the invention cost low, the method is easy, the impregnant can be recycled, the preparation of fibre cost low.
Owner:绍兴市圣诺超高温晶体纤维材料有限公司

NANO powder, NANO ink and micro rod, and the fabrication methods thereof

Disclosed are a method for fabricating nanopowders, nano ink containing the nanopowders and micro rods, and nanopowders containing nanoparticles, nano clusters or mixture thereof, milled from nano fiber composed of at least one kind of nanoparticles selected from a group consisting of metal, nonmetal, metal oxide, metal compound, nonmetal compound and composite metal oxide, nano ink containing the nanopowders and microrods, the method comprising spinning a spinning solution containing at least one kind of precursor capable of composing at least one kind selected from a group consisting of metal, nonmetal, metal oxide, metal compound, nonmetal compound and composite metal oxide, crystallizing or amorphizing the spun precursor to produce nano fiber containing at least one kind of nanoparticles selected from a group consisting of metal, nonmetal, metal oxide, metal compound, nonmetal compound and composite metal oxide, and milling the nano fiber to fabricate nanopowders containing nanoparticles, nano clusters or mixture thereof.
Owner:KOREA INST OF SCI & TECH

High temperature resistant vitreous inorganic fiber

A low shrinkage, high temperature resistant vitreous inorganic fiber having a use temperature up to at least 1330° C., which maintains mechanical integrity after exposure to the use temperature and which is non-durable in physiological fluids, is prepared by the method of forming a melt with ingredients including greater than 71.25 weight percent silica, 0 to about 20 weight percent magnesia, and about 5 to about 28.55 weight percent of calcia, 0 to about 5 weight percent zirconia, and optionally a viscosity modifier in an amount effective to render the product fiberizable; and producing fibers from the melt.
Owner:UNIFRAX I LLC

Polymer matrix composite membrane with high energy density and preparation method thereof

The invention discloses a high-flexible polymer matrix composite membrane with high energy density and a preparation method thereof. The composite membrane is composed of a polymer matrix and core-shell structured nano-fibre dispersed in the polymer matrix; the core layer of the core-shell structured nano-fibre is ceramic fibre; the shell layer is an organic matter coated layer, wherein the mass percentage of the polymer matrix is 50-95%; and the mass percentage of the core-shell structured nano-fibre is 5-50%. The polymer matrix and the core-shell structured nano-fibre are composited into the membrane by adopting a solution blending and tape casting method or a bidirectional membrane pulling method, so that a flexible polymer matrix composite material having the advantages of being good in dielectric property, high in breakdown field strength and high in energy density is obtained. The dielectric constant of the composite material can be modulated to 10-40 by adjusting the content of nano ceramic fibre; simultaneously, the dielectric loss Tan delta is kept to be less than 5%, the breakdown field strength is more than 210 kV / mm, and the energy density is 2-6 kJ / L; and the composite material is a material which can be used for capacitors and high power static energy storage.
Owner:TSINGHUA UNIV

Laminated-structure polymer-based dielectric energy-storage composite material and preparation method thereof

ActiveCN104044318ALow breakdown field strengthImprove electrical polarization characteristicsInorganic material artificial filamentsSynthetic resin layered productsFiberComposite film
The invention discloses a laminated-structure polymer-based dielectric energy-storage composite material and a preparation method thereof. The composite material is a laminated thin film having at least three thin film layer structures. The laminated thin film is formed by a composite membrane, composed of nanometer fibers and a polymer, and a composite membrane, composed of nanometer particles and a polymer, in an alternately laminated manner. According to the invention, a tape casting method is employed for manufacturing a single-layer composite thin film and then a laminated hot-pressing method is employed for manufacturing the laminated composite material, or a multistage tape casting method is employed for flowing out multiple thin film layers successively to obtain a laminated structure. An experimental result proves that the laminated composite material has a relative high dielectric constant, a relative low dielectric loss, relative high breakdown field intensity and a relative high energy-storage density. The laminated composite material is expected for being applied in an embedded capacitor, a static accumulator, a large-power capacitor and the like.
Owner:TSINGHUA UNIV

Method for preparing nano alumina fiber film material

The invention relates to a technology of preparing nano alumina fiber membrane material by electrostatic spinning, comprising: 1. the configuration of sol gel electrostatic spinning liquid. Pouring polyvinyl pyrrolidone into ethanol solvent and stirring thereof with high speed until completely dissolved; getting the polyvinyl pyrrolidone ethanol solution with the concentration of 5-8wt%, then, mixing the solution with the aluminum chloride solution with the concentration of 10-30wt%, wherein, the weight ratio between the polyvinyl pyrrolidone and the aluminum chloride is 3:1-1:1, stirring for one hour. 2. Electrostatic spinning. The prepared sol gel spinning liquid is injected into the electrostatic spinning device and electrostaticly spinning thereof is injected into aluminum chloride / polyvinyl pyrrolidone nano fiber membrane under the voltage of 25-35kv, the extrusion speed of 1-10ml / min and the reception distance of 10-20cm. 3. calcining. At last putting the prepared aluminum chloride / polyvinyl pyrrolidone nano fiber membrane into a muffle furnace and raising the temperature to 450-1100 DEG C with the speed of 50 DEG C / h, calcining for five hours and getting amorphous, Gamma type or Alpha type aluminum oxide fiber membrane. The nano aluminum oxide fiber membrane made by the invention is a catalyst and the carrier material of the catalyst and high temperature resistance filtration material with high specific surface area, good thermal stability and excellent mechanical properties. Furthermore, the material can be widely applied in fields such as the insulating materials and reinforced composites of space shuttle and high temperature boiler.
Owner:TIANJIN POLYTECHNIC UNIV

Graphene fiber and preparation method thereof

The invention discloses a graphene fiber and a preparation method thereof, wherein the graphene fiber is a composite fiber obtained by doping graphene fiber with metal nanowires, the composite fiber comprises the main components of graphene and the metal nanowires, wherein the mass ratio of the metal nanowires is 0.1% ~ 50%, the graphene is in lamellar morphology, and the metal nanowires and the graphene layers are parallelly and simultaneously arranged along the axial direction of the graphene fiber. The metal nanowire doped graphene fiber is a new high performance and multifunctional fiber material, by doping of the metal nanowires, fiber conductive rate is greatly improved, meanwhile the graphene fiber exhibits good tensile strength and excellent toughness, has the very strong potential application value in many fields such as use as lightweight flexible wires and the like.
Owner:HUAWEI TECH CO LTD +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products