Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

3170 results about "Mesoporous silica" patented technology

Mesoporous silica is a mesoporous form of silica and a recent development in nanotechnology. The most common types of mesoporous nanoparticles are MCM-41 and SBA-15. Research continues on the particles, which have applications in catalysis, drug delivery and imaging.

Preparation method of hollow mesoporous silica nanoparticle

The invention relates to a preparation method of a hollow mesoporous silica nanoparticle. The preparation method comprises the following steps: obtaining a polymer-silica composite nanoparticle having a core-shell structure by adopting spherical aggregations of an amphiphilic segmented copolymer in an aqueous solution and a cationic surfactant hexadecyl trimethyl ammonium bromide as double templates and ethyl orthosilicate as a silicon source and by hydrolyzing the silicon source under an alkaline condition; and calcining to remove the templates to obtain the hollow mesoporous silica nanoparticle. The preparation method has the advantages of simplicity, mild reaction condition, and cheap experiment raw materials, and the prepared mesoporous silica nanoparticle has the advantages of high specific surface area, high pore volume, and good biological compatibility. The hollow structure enables the drug loading amount to be substantially improved, nanometer gold, nanometer silver, magnetic iron oxide particles, quantum dots, a contrast agent and the like to be loaded, so the hollow mesoporous silica nanoparticle can be used as a targeting drug release carrier, can be used for magnetic resonance image analysis, and has good application prospects in the fields of the diagnosis and the treatment of cancers.
Owner:DONGHUA UNIV

Hollow mesoporous silica microsphere, preparation method and application thereof

InactiveCN102432024ARealize internal and external transmissionIncrease dissolution rateSilicaPharmaceutical non-active ingredientsMicrosphereDrug carrier
The invention discloses a hollow mesoporous silica microsphere with hollow core and adjustable mesopore and penetrating through a shell, preparation method and application thereof. The hollow mesoporous silica microsphere is obtained by the following steps: under the condition of acid or alkaline solution, taking hexadecyl trimethyl ammonium bromide or PEO-PPO-PEO triblock copolymer as template, adding non-polar solvent, stirring at a certain temperature, emulsifying, then adding silica source, after hydrolysis and condensation, filtering, drying, and roasting to remove the template. The preparation method has simple technique and short time, easy operation and low cost, the prepared microsphere comprises both macropore and mesopore structures, the mesopore penetrates through the shell, the aperture thereof is larger than 5nm and is adjustable within the range of 5-20nm, and by relatively large mesopore channel, internal and external transmissions of large guest molecules can be realized. The microsphere can be used as drug carrier, the drug loading amount can exceed 50% (mass percentage), and the drug release can be controlled by adjusting aperture of the mesopore and dissolutionrate of indissolvable drug can be improved.
Owner:广州万泽医药科技有限公司

Multifunctional nuclear shell structure drug carrier material and preparation method thereof

The invention provides a multifunctional nuclear shell structure drug carrier material and a preparation method thereof; the preparation method comprises the following steps: step one, adopting a solvent-thermal method for preparing monodispersed ferroferric oxide magnetic nanoparticles with grain diameter of about 60nm as ferromagnetic nuclear material of the nuclear shell structure; step two, adopting a sol-gel method for cladding an imporous silicon dioxide layer and a meso-porous layer outside ferromagnetic nucleus in sequence; step three, adopting the sol-gel method for loading a layer ofup-conversion fluorescent material NaYF4: Yb, Er on the material obtained in the step two, wherein the molar concentration of Yb occupies 17% of Y concentration, and the molar concentration of Er occupies 3% of Y concentration. In the invention, an inertia SiO2 layer is designed between the magnetic nucleus and post-functionalized rare earth luminescent material for separating magnetic material from a rare earth luminescent layer so as to prevent fluorescent quenching; up-conversion fluorescent powder with higher fluorescent efficiency is used as fluorescent material; and the sol-gel method with mild reaction condition and uniform dispersion is adopted for forming the nuclear shell structure.
Owner:如皋市生产力促进中心

Mesoporous WO[3-x] visible-light-driven photocatalyst with oxygen vacancy as well as preparation method and application thereof

The invention discloses a mesoporous WO[3-x] visible-light-driven photocatalyst with oxygen vacancy and a preparation method thereof. The method comprises the following steps: calcinating at a controlled temperature of 350-600 DEG C in air so as to obtain a mesoporous silica molecular sieve KIT-6 loaded with tungsten trioxide by taking mesoporous silica molecular sieve KIT-6 as a hard template and a silicotungstic acid or phosphotungstic acid hydrate as a tungsten trioxide precursor; then calcinating at a controlled temperature of 450-550 DEG C so as to obtain a mesoporous silica molecular sieve KIT-6 provided with oxygen vacancy and loaded with tungsten trioxide by utilizing H2 as a reducing agent; and finally, removing the mesoporous silica molecular sieve KIT-6 by use of a 10wt% HF aqueous solution, thereby obtaining the mesoporous WO[3-x] visible-light-driven photocatalyst with oxygen vacancy and relatively large specific surface area and pore diameter. The mesoporous WO[3-x] visible-light-driven photocatalyst with oxygen vacancy is capable of effectively utilizing lights to rapidly catalyze CO2 so as to generate methane, and is high in catalysis efficiency, simple in preparation process and needed equipment, environmentally friendly in preparation process and free from pollution.
Owner:SHANGHAI INST OF TECH

Process for producing ruthenium base catalyst for producing cyclohexene with benzene selective hydrogenation

The invention pertains to chemical engineering field, in particular to a preparation method of a Ru-based catalyst, the catalyst has uniform load and high catalytic efficiency and is used for preparing cyclohexene from benzene through selectively hydrogenation reaction. A precursor of the catalyst is prepared through a cyclohexene/ water component solvent system, and then reduced by a mixing gas of H2 or Ar to prepare the catalyst, and the catalyst consists of ruthenium, a dressing agent and a mesoporous silicon dioxide carrier L, amongst which the active component is ruthenium metal, the dressing agent is a metal oxide, and the precursor is selected from the nitrate or chloride of metal elements in IIA main group, VIII group and IVA main group in the element periodic table; ruthenium and the dressing agent are uniformly carried on the carrier L through the preparation method of the invention. When being used in preparing cyclohexene from benzene through selectively hydrogenation reaction, and compared with the catalyst used for the selectively hydrogenation of industrial benzene, the catalyst has the advantages that: lower the ruthenium consumption, higher selectively hydrogenation activity and selectivity for benzene.
Owner:FUDAN UNIV

Preparation method of graphene oxide and magnetic mesoporous silica composite material capable of adsorbing pollutants in water

InactiveCN103432996AAdjust the content of magnetic substancesLow costOther chemical processesAlkali metal oxides/hydroxidesAlkanePolyetherimide
The invention relates to a preparation method of a composite material prepared by graphene oxide and magnetic mesoporous silica microspheres through chemical bonding interaction. The magnetic particles are prepared by a hydrothermal process; after acid ultrasonic treatment, the magnetic particles are firstly coated with a thin silicon oxide shell layer by a sol-gel method; after that, long-chain alkane is taken as a pore-forming agent, the magnetic particles are copolymerized with tetraethyl orthosilicate (TEOS) in the sol-gel reaction, and then the pore-forming agent is removed by thermal etching, so that the magnetic mesoporous silica particles with certain hydroxyl on the surfaces can be obtained; polyetherimide (PEI) surface modification is carried out on the magnetic mesoporous silica particles, and strong interaction between PEI and silicon hydroxyl is utilized; finally, the carboxyl on ethylene dichloride (EDC) activated graphene oxide reacts with amino on the PEI, so that the graphene oxide magnetic mesoporous silica composite material can be obtained. The preparation method is simple, convenient and controllable and is favorable for amplification preparation. The composite material has large specific surface area and good magnetic controllability, and can adsorb humic acid and heavy metal ions Pb (II) at the same time by virtue of surface groups.
Owner:TONGJI UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products