Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

429 results about "Strong interaction" patented technology

In particle physics, the strong interaction is the mechanism responsible for the strong nuclear force, and is one of the four known fundamental interactions, with the others being electromagnetism, the weak interaction, and gravitation. At the range of 10⁻¹⁵ m (1 femtometer), the strong force is approximately 137 times as strong as electromagnetism, a million times as strong as the weak interaction, and 10³⁸ (100 undecillion) times as strong as gravitation. The strong nuclear force holds most ordinary matter together because it confines quarks into hadron particles such as the proton and neutron. In addition, the strong force binds these neutrons and protons to create atomic nuclei. Most of the mass of a common proton or neutron is the result of the strong force field energy; the individual quarks provide only about 1% of the mass of a proton.

Silane coupling agent modified polycarboxylate superplasticizer and preparation method thereof

The invention discloses a silane coupling agent modified polycarboxylate superplasticizer and a preparation method thereof, belonging to the field of cement additives. The preparation method comprises the following steps: adding a certain amount of acrylic acid into a polyether macromonomer solution, and stirring uniformly; adding a double bond-containing silane coupling agent; stirring the solution to a clear state and continuously stirring; adding an oxidizing agent, an initiator solution and a small monomer solution while keeping the stirring state; after the stirring, curing for 1-2h; adding liquid caustic soda for neutralization and stabilizing the pH value at 6; and adding a silane coupling agent without double bond to obtain a finished product of silane coupling agent modified polycarboxylate superplasticizer. In the invention, a functional group with a siloxane structure is introduced into the main chain of polycarboxylate molecule, and an anchoring ability in chemical bonding strong interaction with cementing material particles is provided for the branch chain of the comb-shaped polycarboxylate superplasticizer; and with the increase of the anchoring ability, the adaptability and slump loss resistance of the superplasticizer can be remarkably enhanced, and the application of the superplasticizer in the field of mineral micropowder dispersion is expanded to a certain degree.
Owner:HAINAN TAIHOO TECH CO LTD

NANO particle/polyamide composite material, preparation method therefor, and use thereof

The present invention relates to the technical field of polymer composite material, and a nano particle / polyamide composite material, a preparation method therefor and a use thereof are disclosed. The nano particle / polyamide composite material comprises 0.01-99 parts by weight of inorganic nano particles and 1-99.99 parts by weight of a polyamide matrix. The preparation method for the nano particle / polyamide composite material of the present invention comprises hydrolysis polymerization or anionic polymerization. The nano particle / polyamide composite material of the present invention has the particular functions of nano materials, while having the advantages of the polymer matrix such as good mechanical performance and being easy for processing and molding. The nano particle is well dispersed in the polyamide matrix, is physically stable, and has a strong interaction at an interface between the nano particles and the polymer matrix, thus being useful as a structural material, a functional material and a polymer masterbatch. The cost of raw materials used in the synthesis method is low, the production apparatus is simple, and the route is green and environment friendly. Therefore, the method is applicable to large-scale industrial production.
Owner:SHANGHAI GENIUS ADVANCED MATERIAL (GRP) CO LTD

Organic semiconductor material and organic thin film transistor using the same

The embodiment of the invention discloses a compound. In the technical scheme, selecting a plane rigid trapezoid molecule s-indacene [1,2-b:5,6-b'] dithiophene containing sulphur atoms as a core, and utilizing the inter-lapping of pi electron cloud and the weak interaction of sulphur atoms to realize the strong interaction of the molecules; introducing dicyanovinyl of strong electron-withdrawing in the radial direction of the trapezoid core to reduce the unoccupied highest molecular orbital energy level of the molecule and simultaneously expand the degree of conjugation in the radial direction of the molecule so as to realize the effective injection and transmission of the electron; and introducing alkyl at the end of the trapezoid core to improve the self-organizing capability of the molecule during the process of film formation, thereby achieving a high ordered film to be used in an organic film transistor. The experiment shows that the electron mobility of the organic semiconductor material composed of the compound provided by the invention is 0.33cm2/V.s, and the electron mobility of the organic semiconductor material provided by the invention is significantly increased than the electron mobility of the organic semiconductor material provided by the prior art.
Owner:CHANGCHUN INST OF APPLIED CHEMISTRY - CHINESE ACAD OF SCI

Nano titanium dioxide (TiO2) for flue gas denitration catalyst and preparation method thereof

The invention provides a special nano titanium dioxide (TiO2) for a high-performance denitration catalyst and a preparation method thereof. The nano-TiO2 comprises the following components in mass percentage: 80-95% of TiO2 and 5-20% of SiO2; and the nano-TiO2 is prepared by a precipitation method, and precipitated precursors comprise TiOSO4 solution and silica sol. The preparation method comprises the following steps: dissolving metatitanic acid used as raw material with concentrated sulfuric acid to obtain titanyl sulfate solution; precipitating titanyl sulfate and the silica sol by the precipitation method to obtain metatitanic acid slurry; and washing the metatitanic acid slurry with de-ionized water, drying and baking to finally obtain the special nano-scale TiO2 for the denitration catalyst. The preparation method has the following advantages: (1) the TiO2 obtained by the precipitation method has the characteristics of small and uniform crystal particles, large specific surface area and more surface lattice defects so that the TiO2 and active components of the catalyst such as vanadium and tungsten interact strongly so as to improve properties of the catalyst; and (2) the cheap silica sol is utilized as an additive, which improves surface acidity and specific surface area of the nano-TiO2 and causes no toxic or harmful substances after the silica sol is baked.
Owner:GUANGZHOU INST OF ENERGY CONVERSION - CHINESE ACAD OF SCI

Preparation method of mesoporous titanium dioxide ball supported Mn-Ce-W compound oxide denitration catalyst

The invention relates to a preparation method of a denitration catalyst and relates to the technique field of preparation of supported denitration catalysts and the field of environment protection. The denitration catalyst takes a mesoporous titanium dioxide ball as a carrier and cerium tungsten manganese oxides as active ingredients. According to the key points of the preparation method, the mesoporous titanium dioxide ball is used as the carrier; three ingredients, namely cerium, tungsten and manganese, are supported on the surface of the mesoporous titanium dioxide ball by using an impregnation method so as to realize uniform dispersion and strong interactions of cerium, tungsten and manganese, and finally the efficient denitration catalyst is obtained through calcining. The catalyst has a mesoporous structure, so that the specific surface area of the catalyst is remarkably enlarged; by using multiple-ingredient cooperation effect, the catalytic activity of the catalyst is effectively improved; the temperature window is widened; the preparation method has the advantage of being environmentally friendly, simple in production technique and suitable for large scale industrial production, and can be used for removing nitric oxide emitted from a fixed source and a mobile source.
Owner:SHANGHAI UNIV +1

AgCo bimetallic catalyst with adsorption-catalysis double functions for use in removal of formaldehyde and preparation method thereof

The invention discloses an AgCo bimetallic catalyst with adsorption-catalysis double functions for use in removal of formaldehyde and a preparation method thereof. In the bimetallic catalyst, mesoporous silicon material modified by 3-aminopropyltriethoxysilane (APTES) is taken as a carrier of the bimetallic catalyst, and active components are transition metals of cobalt and silver. Compared with the noble metals of Pt and Au, an Ag nano-metal is relatively low in price, so that the practical application cost is reduced; Co is taken as one of the active components of a bimetal, and an oxide is turned from a carrier to an active component in comparison to a noble metal/oxide catalyst, so that the content of oxide components is lowered; the mesoporous silicon material modified by APTES is taken as a catalyst carrier, so that the specific surface area is increased greatly, and the dispersion of active components and normal-temperature adsorption of formaldehyde are promoted in comparison to the oxide carrier. The method is simple in steps and short in period. A strong interaction occurs between the metals of Ag and Co in a synthesis process, so that low-temperature catalytic oxidation removal of formaldehyde is facilitated.
Owner:DALIAN UNIV OF TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products