Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

3303 results about "Kerosene" patented technology

Kerosene, also known as paraffin, lamp oil, and coal oil (an obsolete term), is a combustible hydrocarbon liquid which is derived from petroleum. It is widely used as a fuel in aviation as well as households. Its name derives from Greek: κηρός (keros) meaning wax, and was registered as a trademark by Canadian geologist and inventor Abraham Gesner in 1854 before evolving into a genericized trademark. It is sometimes spelled kerosine in scientific and industrial usage. The term kerosene is common in much of Argentina, Australia, Canada, India, New Zealand, and the United States, while the term paraffin (or a closely related variant) is used in Chile, eastern Africa, South Africa, Norway, and in the United Kingdom. The term lamp oil, or the equivalent in the local languages, is common in the majority of Asia and "Earth Oil" in some parts of southern Asia.Liquid paraffin (called mineral oil in the US) is a more viscous and highly refined product which is used as a laxative. Paraffin wax is a waxy solid extracted from petroleum.

Built-up synergetic class-A/B water extinguishing agent series

The invention discloses a built-up synergetic class-A / B water extinguishing agent series. Class-A fires caused by solid substances (such as woods, cottons, wools, linens, paper) and products thereof and class-B fires caused by liquid or melted solids such as gasoline, kerosene, diesel oil, crude oil, methanol, ethanol, asphalt, paraffin waxes and the like can be put out rapidly through the functions such as heat absorption and cooling, diluting and smothering, insulating and covering, suppressing and blocking combustion chains, and the like which are synergetically performed by various extinguishing functional components, and a high-temperature-resistant thermal-insulation and fire-retarding covering layer is formed on the surface of an inflammable matter by various after-combustion functional components so as to achieve the effect of after-combustion resistance. Because the class A / B fires relate to multiple occasions of daily life and production activities, the extinguishing agent disclosed by the invention can be used in the fields of home fire prevention and extinguishing, urban architecture fire prevention and extinguishing, oil depot and gasoline station fire prevention and extinguishing, vehicle and ship fire prevention and extinguishing, forest and grassland fire prevention and extinguishing, mine fire prevention and extinguishing, confined spaces (such as civil air-defense architectures) fire prevention and extinguishing.
Owner:NANJING UNIV OF SCI & TECH

Combined process for processing heavy oil

The invention discloses a group technology for heavy oil upgrading, in which the job steps include: (1) full or moiety of heavy oil individually or mixed with catalytic clarified oil entering solvent deasphalting plant, after the solvent deasphalting treatment, obtaining a deasphalted oil and a degreasing asphalt; (2) the degreasing asphalt obtained by step (1) individually or mixed with another moiety of heavy oil entering coking plant for coking treatment, in which the obtained tar heavy oil returns to solvent deasphalting plant or enters heavy oil hydrotreating plant, or moiety of tar heavy oil returns to solvent deasphalting plant and another moiety of tar heavy oil enters heavy oil hydrotreating plant, catalytic plant or hydrocracking plant; (3) the deasphalted oil obtained by step (1) individually or mixed with vacuum residual oil, non-pressure residual oil, pressure-relief residual oil, catalytic cycle stock and one or more than one heavy oil of tar heavy oil obtained by step (2) entering heavy oil hydrotreating plant for hydrotreatment, after hydrotreatment, obtaining fractions of benzin naphtha, plane kerosene and diesel and hydrogenating heavy oil. The invention can improve the charge-in nature, alleviate the operating condition and prolong the cycle length of the heavy oil hydrotreating plant, which provides better raw oil for downstream plants including catalytic plant.
Owner:LUOYANG PETROCHEMICAL ENG CORP SINOPEC

Systems, methods, and compositions for production of synthetic hydrocarbon compounds

A process and system for producing hydrocarbon compounds or fuels that recycle products of hydrocarbon compound combustion—carbon dioxide or carbon monoxide, or both, and water. The energy for recycling is electricity derived from preferably not fossil based fuels, like from nuclear fuels or from renewable energy. The process comprises electrolysing water, and then using hydrogen to reduce externally supplied carbon dioxide to carbon monoxide, then using so produced carbon monoxide together with any externally supplied carbon monoxide and hydrogen in Fischer-Tropsch reactors, with upstream upgrading to desired specification fuels—for example, gasoline, jet fuel, kerosene, diesel fuel, and others. Energy released in some of these processes is used by other processes. Using adiabatic temperature changes and isothermal pressure changes for gas processing and separation, large amounts of required energy are internally recycled using electric and heat distribution lines. Phase conversion of working fluid is used in heat distribution lines for increased energy efficiency. The resulting use of electric energy is less than 1.4 times the amount of the high heating value of combustion of so produced hydrocarbon compounds when carbon dioxide is converted to carbon monoxide in the invention, and less than 0.84 when carbon monoxide is the source.
Owner:FUELCOR LLC

Harvesting hydrocarbons and water from methane hydrate deposits and shale seams

A method of extraction of fuels, organic pollutants, and elements from Methane hydrate deposits, shale seams and the soil is described which freezes the zone and heats the center carrying the fuel, chemicals and water in these deposits and seams from where they are found, be it deep in the sea or on land, and carries them into the condensing unit in inert Nitrogen gas. Required drilling on the surface or sea bottom includes a main shaft and with auxiliary narrow drillings widely spaced from the shaft. The extraction zone, which is first cooled to brittle cold using the evaporation of Liquid Nitrogen and fractured with vibrations, is heated to the highest temperature of the hydrocarbon fraction desired to be extracted. The evaporating hydrocarbons are extracted in a Nitrogen gas carrier, a recognized fire suppressant (NFPA Code 2000). To speed the extraction rate, tonal input from two or more sounding units vibrates the seam structure freeing the evaporated hydrocarbons allowing more rapid escape into the shaft. To prevent air loss in aquifers, ice barriers seal the zone periphery. These hydrocarbons are separated into the hydrocarbons fractions, into fuel fractions as heating oil, kerosene, gasoline, ethers, and fuel gas including methane, Argon / Oxygen and rare gas segments, or, if pollutants, into the separate chemicals by boiling point. The thermal gradient of the extraction pipe is implemented by sourcing the Nitrogen from Liquid Nitrogen and bundling those pipes with the extraction pipe condensing its contents by hydrocarbon fractions into vessels and gas drums depending on boiling points of fractions. Water is separated from the gasoline segment and purified first by separation and then by freezing. The extraction of deep deposits layer the extraction zones as well as work neighboring extraction zones covering many acres. Fuel gases can be liquefied or burned in an on-site electric generating plant.
Owner:AIR WARS DEFENSE

Liquid fuel compositions

The present invention provides a liquid fuel composition comprising a distillation fraction of a component having at least one C4+ compound derived from a water-soluble oxygenated hydrocarbon prepared by a method comprising:
    • providing water and a water-soluble oxygenated hydrocarbon comprising a C1+O1+ hydrocarbon in an aqueous liquid phase and/or a vapor phase;
    • providing H2;
    • catalytically reacting in the liquid and/or vapor phase the oxygenated hydrocarbon with the H2 in the presence of a deoxygenation catalyst at a deoxygenation temperature and deoxygenation pressure to produce an oxygenate comprising a C1+O1-3 hydrocarbon in a reaction stream; and
    • catalytically reacting in the liquid and/or vapor phase the oxygenate in the presence of a condensation catalyst at a condensation temperature and condensation pressure to produce the C4+ compound,
    • wherein the C4+ compound comprises a member selected from the group consisting of C4+ alcohol, C4+ ketone, C4+ alkane, C4+ alkene, C5+ cycloalkane, C5+ cycloalkene, aryl, fused aryl, and a mixture thereof;
wherein the liquid fuel composition is selected from:
  • a gasoline composition having an initial boiling point in the range of from 15° C. to 70° C. (IP123), a final boiling point of at most 230° C. (IP123), a RON in the range of from 85 to 110 (ASTM D2699) and a MON in the range of from 75 to 100 (ASTM D2700);
  • a diesel fuel composition having an initial boiling point in the range of from 130° C. to 230° C. (IP123), a final boiling point of at most 410° C. (IP123) and a cetane number in the range of from 35 to 120 (ASTM D613); and
  • a kerosene composition having an initial boiling point in the range of from 80 to 150° C., a final boiling point in the range of from 200 to 320° C. and a viscosity at −20° C. in the range of from 0.8 to 10 mm2/s (ASTM D445).
  • Owner:SHELL USA INC

    Process for the preparation of middle distillates

    A process for the preparation of one or more hydrocarbon fuel products boiling in the kero/diesel range from a stream of hydrocarbons produced in a Fischer-Tropsch process, in which process synthesis gas is converted into liquid hydrocarbons, at least a part of the hydrocarbons boiling above the kero/diesel range, having the following steps:
      • [0002]
      • (1) hydrocracking/hydroisomerizing at least a part of the Fischer-Tropsch hydrocarbons stream at a conversion per pass of at most 80 wt % of the material boiling above 370° C. into material boiling below 370° C.;
      • [0003]
      • (2) separating the product stream obtained in step (1) into one or more light fractions boiling below the kero/diesel boiling range, one or more fractions boiling in the kero/diesel boiling range and a heavy fraction boiling above the kero/diesel boiling range;
      • [0004]
      • (3) hydrocracking/hydroisomerizing the major part of the heavy fraction obtained in step (2) at a conversion per pass of at most 80 wt % of the material boiling above 370° C. into material boiling below 370° C.;
      • [0005]
      • (4) separating the product stream obtained in step (3) into one or more light fractions boiling below the kero/diesel boiling range, one or more fractions boiling in the kero/diesel boiling range and a heavy fraction boiling above the kero/diesel boiling range; and,
      • [0006]
      • (5) hydrocracking/hydroisomerizing the major part of the heavy fraction obtained in step (4) in the hydrocracking/hydroisomerizing process described in step (1) and/or step (3), in which process the Fischer-Tropsch hydrocarbons stream comprises at least 35 wt % C30+ (based on total amount of hydrocarbons in the Fischer-Tropsch hydrocarbons stream) and in which stream the weight ratio C60+/C30+ is at least 0.2.
    Owner:SHELL USA INC

    Preparation method for vanadyl sulfate electrolyte of all-vanadium flow battery

    The invention discloses a preparation method for vanadyl sulfate electrolyte of an all-vanadium flow battery. The preparation method is characterized by comprising the following steps of: adjusting pH value of vanadyl sulfate solution obtained from leaching vanadium slag and stone coal, back extracting and resin-analyzing treatments by using oxide or hydroxide of alkali metal or alkaline earth; adding an inorganic reducing agent; performing multi-grade counter-current extraction by using P204 or P507: TBP: sulfonated kerosene extracting agent; after the two-phase separation, washing the vanadium-loaded organic phase; performing 2-5 grades of multi-grade counter-current back extraction on the vanadium-loaded organic phase by using sulfuric acid solution to obtain the back extracting liquid of vanadyl sulfate; adjusting the pH value of the back extracting liquid of vanadyl sulfate, adding the organic reducing agent to adjust the potential value of the solution; extracting the solution by using the extracting agent; after the two-phase separation, washing the vanadium-loaded organic phase by using the sulfuric acid solution; performing multi-grade counter-current back extraction by using the sulfuric acid solution to obtain the vanadyl sulfate solution; and distilling until the concentration required for all-vanadium flow battery. The method provided by the invention can improve the purity, simplify the preparation procedure and reduce the cost.
    Owner:GUANGDONG INST OF RARE METALS
    Who we serve
    • R&D Engineer
    • R&D Manager
    • IP Professional
    Why Eureka
    • Industry Leading Data Capabilities
    • Powerful AI technology
    • Patent DNA Extraction
    Social media
    Try Eureka
    PatSnap group products