Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

425results about How to "Long catalyst life" patented technology

Catalytic conversion of oxygenates to olefins

InactiveUS20070043250A1Coke selectivity of be improveLow coke selectivityLiquid hydrocarbon mixture productionEthylene productionOxygen compoundMolecular sieve
An oxygenate conversion catalyst useful in the conversion of oxygenates such as methanol to olefinic products may be improved by the use of a catalyst combination based on a molecular sieve in combination with a co-catalyst comprising a mixed metal oxide composition which has oxidation/reduction functionality under the conditions of the conversion. This metal oxide co-catalyst component will comprise a mixed oxide of one or more, preferably at least two, transition metals, usually of Series 4, 5 or 6 of the Periodic Table, with the metals of Series 4 being preferred, as an essential component of the mixed oxide composition. The preferred transition metals are those of Groups 5, especially titanium and vanadium, Group 6, especially chromium or molybdenum, Group 7, especially manganese and Group 8, especially cobalt or nickel. Other metal oxides may also be present. The preferred molecular sieve components in these catalysts are the high silica zeolites and the SAPOs, especially the small pore SAPOs (8-membered rings), such as SAPO-34. These catalyst combinations exhibit reduced coke selectivity have the potential of achieving extended catalyst life. In addition, these catalysts have the capability of selectively converting the hydrogen produced during the conversion to liquid products, mainly water, reducing the demand on reactor volume and product handling.
Owner:EXXONMOBIL CHEM PAT INC

Catalytic conversion of oxygenates to olefins

An oxygenate conversion catalyst useful in the conversion of oxygenates such as methanol to olefinic products may be improved by the use of a catalyst combination based on a molecular sieve in combination with a co-catalyst comprising a mixed metal oxide composition which has oxidation / reduction functionality under the conditions of the conversion. This metal oxide co-catalyst component will comprise a mixed oxide of one or more, preferably at least two, transition metals, usually of Series 4, 5 or 6 of the Periodic Table, with the metals of Series 4 being preferred, as an essential component of the mixed oxide composition. The preferred transition metals are those of Groups 5, especially titanium and vanadium, Group 6, especially chromium or molybdenum, Group 7, especially manganese and Group 8, especially cobalt or nickel. Other metal oxides may also be present. The preferred molecular sieve components in these catalysts are the high silica zeolites and the SAPOs, especially the small pore SAPOs (8-membered rings), such as SAPO-34. These catalyst combinations exhibit reduced coke selectivity have the potential of achieving extended catalyst life. In addition, these catalysts have the capability of selectively converting the hydrogen produced during the conversion to liquid products, mainly water, reducing the demand on reactor volume and product handling.
Owner:EXXONMOBIL CHEM PAT INC

Multitube reactor, vapor phase catalytic oxidation method using the multitube reactor, and start up method applied to the multitube reactor

A multitube reactor, wherein tubes having smaller tolerance between a nominal size and actual sizes are used as reaction tubes to stably perform a high yield reaction for a long period, a catalyst is filled into the reaction tubes so that the catalyst layer peak temperature portions of the reaction tubes are not overlapped with the connection sites thereof with baffles to effectively prevent hot spots from occurring and stably perform a reaction for a long period without the clogging of the reaction tubes, a heat medium and raw material gas are allowed to flow in the direction of a countercurrent and a specified type of catalyst is filled into the reaction tubes so that activity is increased from the inlet of the raw material gas to the outlet thereof to prevent the autooxidation of products so as to prevent equipment from being damaged due to the reaction, and, at the time of starting, gas with a temperature of 100 to 400° C. is led to the outside of the reaction tubes to increase the temperature of the reaction tubes and, a heat medium, which is solid at the room temperature, is heated to circulate to the outside of the reaction tubes to efficiently start up the reactor without affecting the activity of the catalyst.
Owner:MITSUBISHI CHEM CORP

Supported advanced oxidation catalyst material and preparation method thereof

The invention belongs to the field of catalyst materials for waste water treatment, and provides a supported advanced oxidation catalyst material and a preparation method thereof. The method includes the steps: (1) pre-treating carrier materials; (2) placing the pretreated carrier materials into plating solution with a pH (potential of hydrogen) value of 3-13, stirring mixture for at least 5 minutes at the temperature ranging from 30 DEG C to 90 DEG C, performing solid-liquid separation, cleaning a solid phase by the aid of water and organic solvents, and drying the cleaned solid phase to chemically-plated carrier materials; (3) aerobically roasting the chemically-plated carrier materials for 1-8 hours at the temperature ranging from 200 DEG C to 1000 DEG C to obtain the catalyst material. According to the catalyst material, metal oxides are uniformly loaded on the surfaces of the carrier materials, binding force among the loaded metal oxides and the carrier materials can be effectively improved, loading capacity is improved, the service life of the catalyst material is prolonged, catalytic activity is improved, and secondary pollution caused by metal ion leaching is effectively relieved.
Owner:成都柏溪环境科技有限公司
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products