Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

12616 results about "Urea" patented technology

This medication has 2 types of ingredients (emollient, keratolytic) that work together to treat or prevent dry, rough, scaly, itchy skin (e.g., eczema, keratosis, xerosis). Dry skin is caused by a loss of water in the upper layer of the skin. Emollients are substances that soften and moisturize the skin and decrease itching and flaking.

Exhaust aftertreatment system using urea water

An exhaust aftertreatment system comprises an injector for injecting urea water into an exhaust duct, and a denitration catalyst disposed downstream of the injector with respect to a flow of exhaust gas. The exhaust aftertreatment system reduces nitrogen oxides in the exhaust gas by the denitration catalyst while using ammonia produced from the urea water injected from the injector. The urea water is injected along a direction of the flow of the exhaust gas within the exhaust duct, and a porous plate is disposed in multiple stages in a space of the exhaust duct such that droplets of the injected urea water impinge against the porous plate before reaching a wall surface of the exhaust duct. A surface of the porous plate subjected to the impingement of the droplets is arranged to face downstream with respect to the flow of the exhaust gas. Deposition of the urea water is prevented by causing film boiling when the droplets impinge against the porous plate, and the urea water reflected by the porous plate is uniformly dispersed into the exhaust gas. Thus, the urea water is uniformly dispersed into the exhaust gas without increasing a pressure loss of the exhaust gas. The urea water is prevented from depositing on the wall surface and producing a precipitate in the form of a solid.

Carbon nano-dot, and preparation method and application thereof

ActiveCN102849722AOvercome costsOvercoming the problem of easy fluorescence quenching in the aggregated stateNanotechnologyNano-carbonBiological imagingOrganic compound
The invention discloses a carbon nano-dot, and a preparation method and an application thereof, and solves a problem that the application of present nano-dots is restricted because of high preparation cost and easy fluorescent quenching appearance of an aggregate state. According to the invention, the carbon nano-dot having a high fluorescence quantum efficiency is prepared through adopting a polycarboxyl or polyhydroxy contained organic compound, or an amino acid as a raw material, and urea as a surface passivation modification agent, and through a microwave process, and a carbon nano-dot fluorescent ink is prepared through using the carbon nano-dot. The preparation method disclosed in the invention has the advantages of simplicity, low cost and convenient large-scale production; the fluorescent quenching of the prepared carbon nano-dot on the surface of a biological product does not appear, and the highest fluorescence quantum efficiency is 42%; and the prepared carbon nano-dot fluorescent ink is nontoxic, does not generate a precipitate after long-time dispose, and can be applied to the biological imaging field, the biological product identification field, the information storage field, the information encryption field, the false proof field, the illumination display field, the photovoltaic device field and the like.

Membrane electrolyzer and hemodialysis system using the same

A sorbent hemodialysis system includes a dialyzer configured to receive a flow of clean dialysate from a reservoir and to output an unclean dialysate flow. The system also includes a sorbent component having a urease section and a sorbent section through which the unclean dialysate flow from the dialyzer passes, wherein the sorbent component removes urea from the dialysate. The system further comprises a membrane electrolyzer that receives at least a portion of said clean dialysate flow and separates the dialysate flow into an acidic component flow and a base component flow. A mixing conduit combines the base component flow from the membrane electrolyzer and an output dialysate solution from the urease section of the sorbent component to separate the dialysate solution into an ammonia gas amount and ammonia liquid amount. A gas vent is used to vent the ammonia gas amount, and the sorbent section with a suitable amount of zirconium phosphate (ZrP) removes the ammonia liquid amount from the unclean dialysate flow before flowing the clean dialysate to the reservoir. The system can further include a second mixing conduit upstream of the sorbent section of the sorbent component, the second mixing conduit combining the acidic component flow and the ammonia liquid amount in the dialysate solution to increase the pH of the dialysate solution to about 7.5 prior to returning to the reservoir.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products