Patents
Literature
Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

1111 results about "Quantum yield" patented technology

The quantum yield (Φ) of a radiation-induced process is the number of times a specific event occurs per photon absorbed by the system. The "event" is typically a kind of chemical reaction.

Multimodal silica-based nanoparticles

The present invention provides a fluorescent silica-based nanoparticle that allows for precise detection, characterization, monitoring and treatment of a disease such as cancer. The nanoparticle has a range of diameters including between about 0.1 nm and about 100 nm, between about 0.5 nm and about 50 nm, between about 1 nm and about 25 nm, between about 1 nm and about 15 nm, or between about 1 nm and about 8 nm. The nanoparticle has a fluorescent compound positioned within the nanoparticle, and has greater brightness and fluorescent quantum yield than the free fluorescent compound. The nanoparticle also exhibits high biostability and biocompatibility. To facilitate efficient urinary excretion of the nanoparticle, it may be coated with an organic polymer, such as poly(ethylene glycol) (PEG). The small size of the nanoparticle, the silica base and the organic polymer coating minimizes the toxicity of the nanoparticle when administered in vivo. In order to target a specific cell type, the nanoparticle may further be conjugated to a ligand, which is capable of binding to a cellular component associated with the specific cell type, such as a tumor marker. In one embodiment, a therapeutic agent may be attached to the nanoparticle. To permit the nanoparticle to be detectable by not only optical fluorescence imaging, but also other imaging techniques, such as positron emission tomography (PET), single photon emission computed tomography (SPECT), computerized tomography (CT), bioluminescence imaging, and magnetic resonance imaging (MRI), radionuclides/radiometals or paramagnetic ions may be conjugated to the nanoparticle.
Owner:SLOAN KETTERING INST FOR CANCER RES +1

Liquid crystal display screen, display device and quantum dot layer graphical method

The invention discloses a liquid crystal display screen, a display device and a quantum dot layer graphical method. A plurality of pixel units are arranged in a liquid crystal panel; each pixel unit comprises a plurality of subpixel units capable of displaying different colors; and a monochromatic quantum dot layer is arranged at the position corresponding to at least one color of subpixel unit of each pixel unit. The embodiment of the invention substitutes the quantum dot layer for the conventional resin to serve as a color filter for converting background light into monochromatic light, the emission spectrum of the quantum dots is narrow and the luminous efficiency is high, and the background light can be efficiently converted into monochromic light, so the color gamut of the liquid crystal display screen can be improved, the color saturation is enhanced and the display quality of the display screen is improved. The monochromic quantum dots are dispersed by a high-molecular polymer network, so accumulation of the quantum dots can be avoided, the quantum yield is increased, the quantum excited lighting effect can be improved, contact of the monochromic quantum dots and oxygen can be avoided, and the service life of the quantum dots is prolonged.
Owner:BEIJING BOE OPTOELECTRONCIS TECH CO LTD

Copper (i) complexes for optoelectronic devices

The invention relates to neutral mononuclear copper (I) complexes for emitting light and with a structure according to formula (A) in which: M represents: Cu(I); L∩L represents: a single, negatively charged, bidentate ligand; N∩N represents: a diimine ligand (substituted with R and FG), in particular a substituted 2,2′-bipyridine derivative (bpy) or a substituted 1,10-phenanthroline derivative (phen); R represents: at least one sterically demanding substituent for preventing the planarisation of the complex in the excited state; FG=functional group, and represents: at least one second substituent for increasing solubility in organic solvents. The substituent can also be used for electron transport or alternatively for hole transport, said functional group being bound to the diimine ligands either directly or by means of suitable bridges; and the copper (I) complex: having a ΔE(S1−T1) value of less than 2500 cm−1 between the lowest excited singlet state (S1) and the triplet state (T1) which lies below; having an emission lifespan of at most 20 μs; having an emission quantum yield of greater than 40%, and a solubility of at least 1 g/L in organic solvents, in particular polar organic hydrocarbons such as acetone, methyl ethyl ketone, benzene, toluene, chlorobenzene, dichlorobenzene, dichloromethane, chloroform, dichloroethane, tetrachloroethylene, alcohols, acetonitrile or water.
Owner:SAMSUNG DISPLAY CO LTD

Multiple-test tube stirring-rotating type method and device for photochemical reaction

The invention relates to a multiple-test tube stirring-rotating type method and device for photochemical reaction. The inner parts of test tubes for photochemical reaction are simultaneously stirred by magneton, the test tubes rotate around a light source and are illuminated in rotating states, the center light source surrounded by the test tubes is filtered by chemical light-filtering liquid or light-filtering sheets, the chemical light-filtering liquid is put into an outer interlayer with a double-interlayer quartz cold trap, the cooling water passes through an inner interlayer, and the light source is placed in the inner cavity of the quartz cold trap. At most 10-20 test tubes of 10-50ml can be simultaneously inserted into the device of the invention to be illuminated; the liquid for photochemical reaction in the test tubes is ventilated to participate in the reaction or is ventilated for protecting; and the invention can ensure the uniformity of the concentration of the reaction solution and the uniformity of the received illumination, can ensure the reliability and the high efficiency of the experimental result, and is especially suitable for measuring kinetic constants such as the quantum yield, the reaction rate and the like of the photochemical reaction.
Owner:南京胥江机电厂

Color film substrate, liquid crystal display screen and monochromatic quantum dot dispersion method

The invention discloses a color film substrate, a liquid crystal display screen and a monochromatic quantum dot dispersion method. A laminated structure containing monochromatic quantum dots is arranged on a sub-pixel region of at least one color of each pixel on the color film substrate, and is formed by alternately laminating flaky graphite layers and monochromatic quantum dot layers; as the laminated structure containing the monochromatic quantum dots is used to replace current color resin and used as a colored filter, bias lighting is converted into monochromatic light; as an emission spectrum of the quantum dots is narrow and high in light efficiency, the bias lighting can be efficiently converted into the monochromatic light, the color gamut of the liquid crystal display screen can be improved, the color saturation can be enhanced, and the displaying quality of the display screen can be improved; moreover, the laminated structure is formed by alternately laminating the flaky graphite layers and the monochromatic quantum dot layers, so that the monochromatic quantum dots can be uniformly dispersed between adjacent flaky graphite layers, the accumulation of the monochromatic quantum dots can be prevented, the quantum productivity of the quantum dots is increased, and the excitation light efficiency of the quantum dots is improved.
Owner:BEIJING BOE OPTOELECTRONCIS TECH CO LTD

Strong-fluorescence boron dipyrromethene dye containing carbazole structure

The invention belongs to strong-fluorescence boron dipyrromethene dyes containing a carbazole structure in the technical field of organic chemical industry and fine chemical industry. Because a method for preparing the strong-fluorescence boron dipyrromethene dye containing the carbazole structure and derivatives thereof adopts boron dipyrromethene and carbazole aldehyde with substituent as raw materials, the molar ratio of the boron dipyrromethene to the carbazole aldehyde is 1:2-5, piperidine is a catalyst, a 4-angstrom molecular sieve is a dehydrating agent, and the molar ratio of the borondipyrromethene to the catalyst is 1:0.01-0.20; in an organic solvent, at the temperature of between 100 and 150 DEG C and under the protection of argon or nitrogen, the mixture reacts for 8 to 50 hours by stirring, the carbazole aldehyde and the active methylene of the boron dipyrromethene are dehydrated to generate the boron dipyrromethene derivatives; and after the carbazole structure with different substituents is introduced into the boron dipyrromethene, the optical property of the boron dipyrromethene compound is changed, the red shift of the absorption spectrum thereof is 80 nanometers, the red shift of the emission spectrum is 90 nanometers, higher fluorescence quantum yield is kept at 0.67, the laser efficiency reaches more than 30 percent, and the strong-fluorescence boron dipyrromethene derivatives containing the carbazole structure are obtained.
Owner:DALIAN UNIV OF TECH

Process for producing fluorescent composite microgel hypersensitive to temperature and pH

The invention discloses a preparation method of fluorescent complex microgel which is sensitive to temperature and pH. The method comprises the technical steps of preparing a mixed surface active agent, preparing the oil phase of a template, preparing an emulsive liquid, preparing a water phase, preparing N-isopropyl acryl amide copolymerized methacrylic acid microgel, preparing turgid N-isopropyl acryl amide copolymerized methacrylic acid microgel, preparing a mixed liquid of Gamma-aminopropyl triethoxy silane and normal heptane, preparing a silicon dioxide polymer complex microballoon decorated by a surface deposited amino group, preparing a mixed liquid of fluorescein isothiocyanate and absolute ethyl alcohol as well as preparing the fluorescent complex microgel. In the invention, the fluorescein isothiocyanate with high quantum yield and good optical stability is adopted as fluorescent matter; the prepared fluorescent complex microgel is sensitive to temperature and pH; and the size of the prepared fluorescent complex microgel is in a micron range and is hard to be aggregated. The method has the advantages of reasonable design, practical technique and easy operation; moreover, reactions are carried out under normal temperature and the like; the method can be applied to the fields of controlled release of medicament, biological probe, chemical separation, and the like.
Owner:SHAANXI NORMAL UNIV

Simple green synthesis method of nitrogen-doped carbon quantum dots

The invention discloses a simple green synthesis method of nitrogen-doped carbon quantum dots. Konjac flour, serving as a carbon source, is subjected to pyrolysis in air and solvent extraction to obtain the nitrogen-doped carbon quantum dots. The synthesized nitrogen-doped carbon quantum dots are easily dissolved in solvents such as ethanol, N,N-dimethyl formamide and dimethyl sulfoxide and can be ultrasonically dispersed in water, the particle size is 0.3-2.4 nm, the highest fluorescence quantum yield is 22%, and the yield is 3%-5%. The nitrogen-doped carbon quantum dots can emit blue light, green light and red light respectively under the excitation of ultraviolet light, blue light and green light, and the fluorescence property of the nitrogen-doped carbon quantum dots can be adjusted through the excitation light wavelength, concentration and pH value. The method is simple and easy to operate and can be applied to large-scale synthesis of carbon quantum dots while the cost is low. The synthesized nitrogen-doped carbon quantum dots can be applied to the development of living cells in vitro and the preparation of stimulus response materials, and have broad application prospects in multiple fields of biomarkers, biomedical imaging, bio-development, drug screening and detection, biochips, biosensing and the like.
Owner:ANHUI UNIVERSITY

One-dimensional organic semiconductor spiral nano-wires with fluorescence response upon organic amine gases, and preparation method and application thereof

The invention relates to one-dimensional organic semiconductor spiral nano-wires with ultra-sensitive fluorescence response upon organic amine gases, and a preparation method and an application thereof. According to the invention, perylene imide derivatives comprising perylene and with asymmetric amphiphilic substituents on two ends are adopted as construction units; in a mixed liquid of a good solvent and a poor solvent, through pi-pi interactions between perylenes of a plurality of perylene imide derivatives comprising perylene and with asymmetric amphiphilic substituents on two ends, the one-dimensional organic semiconductor spiral nano-wires are obtained through self-assembly. The one-dimensional organic semiconductor spiral nano-wires have two significant advantages of a nano-grade spiral structure and good fluorescence quantum yield (up to 25%), such that the nano-wires are suitable to be used in fluorescence detection of organic amine in air. When a network-structured porous membrane woven by using the one-dimensional organic semiconductor spiral nano-wires contacts trace amine vapour (with a concentration of ppb-ppm level), the fluorescence is quenched.
Owner:INST OF CHEM CHINESE ACAD OF SCI
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products