Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

579 results about "Bioanalysis" patented technology

Bioanalysis is a sub-discipline of analytical chemistry covering the quantitative measurement of xenobiotics (drugs and their metabolites, and biological molecules in unnatural locations or concentrations) and biotics (macromolecules, proteins, DNA, large molecule drugs, metabolites) in biological systems.

Preparation method of long carbon chain dibasic acid

The invention relates to a preparation method of a long carbon chain dibasic acid. C11 and upper alkane is used as a substrate to produce a corresponding long carbon chain dibasic acid product through the conversion of the substrate into the long carbon chain dibasic acid by using a microbial fermentation method as well as the extraction and the separation of fermentation liquid and the refining processes of a crude product of dibasic acid. Through technological innovation and process innovation, the invention researches a new preparation method of the long carbon chain dibasic acid, greatly decreases the production cost of the long carbon chain dibasic acid, improves the yield and the product quality of the long carbon chain dibasic acid, can produce C11 and upper long carbon chain dibasic acid, finally solve the bottleneck problem restricting the rapid development of the long carbon chain dibasic acid, and form the industrialized scale and the technological predominance. The long carbon chain dibasic acid produced by using the bioanalysis provided by the invention has the advantages of high acid generation level, low production cost, good product quality, complete variety, and the like, the prepared long carbon chain dibasic acid product has high single acid content, good light transmission and high thermal stability, can meet the requirements of different clients, and can be used for producing high-grade spices, high-performance engineering plastics, high-temperature dielectric medium, high-grade hot-melt adhesive, coldness-resistant plasticizer, high-grade lubricating oil, high-grade paint, coating, and the like. The invention greatly widens the development space of the downstream products of the long carbon chain dibasic acid.
Owner:CATHAY R&D CENT CO LTD +2

Magnetic bead-based arrays

The present invention relates to magnetic particle separators using micromachined magnetic arrays and more particularly, to magnetic particle separators or manipulators using controlled magnetization on micromachined magnetic arrays for the separation of cells and other biological materials. The present invention also pertains to using such devices for the separation and analysis of biological materials for immunoassays, DNA sequencing, protein analysis, and biochemical detection applications. The present invention can also be viewed as a novel method for fabricating fully integrated permanent magnet components within any microelectromechanical system (“MEMS”) structures. The present invention also provides a magnetic particle separation and manipulation system for rapid separation and accurate manipulation of magnetic particles in two-dimensional electromagnetic arrays, which utilize high throughput biological analyses. A disposable cartridge can be produced in low cost using a low cost substrate such as plastic or other polymer, glass, or metal. Magnetic flux is generated by conventional or micromachined electromagnets a platform system consisting of magnetic flux sources, magnetic flux guidance, and a microprocessor control interface. By controlling direction of electric currents into inductors on the platform system, arbitrary magnetic poles can be generated on Permalloy structures of the cartridge to separate and manipulate magnetic particles. The magnetic particle separator and manipulator in the present invention can be easily combined with automated detection systems such as a fluorescent monitoring system.
Owner:AHN CHONG H +2

Method for preparing phosphaalkene by utilizing electrochemistry

The invention discloses a method for preparing phosphaalkene by utilizing electrochemistry. The method comprises the following steps: firstly, assembling an electrolytic cell by using an inert electrode as a positive electrode and phosphorus as a negative electrode, wherein in the electrolytic cell, the electrolyte solution is one or several of an aqueous electrolyte solution, an organic electrolyte solution and an ionic liquid electrolyte solution containing the electrolyte; applying direct current or alternating current voltage between the two electrodes of the electrolytic cell and stripping the phosphorus into phosphaalkene under a function of a direct current electric field or an alternating current electric field; and performing filtration treatment to obtain a stripped product, washing the stripped product for a plurality of times by using an organic solvent, centrifugally separating and drying to obtain the required phosphaalkene. According to the method, a phosphaalkene material with good quality, high yield and low cost can be conveniently, quickly and securely produced in an environment-friendly form, and can be applied to multiple fields of secondary ion batteries, supercapacitors, solar batteries, fuel batteries, electro-catalysis, electronic elements, bioanalysis, biological sensors and the like.
Owner:BEIJING INSTITUTE OF PETROCHEMICAL TECHNOLOGY

Phenylboronic-acid-functionalized graphene oxide composite nano material and preparation and application thereof

The present invention relates to a new phenylboronic-acid-functionalized graphene oxide composite nano material and preparation and application thereof. The material is prepared by immobilization of polydopamine-packed magnetic nanoparticles onto polyethyleneimine-modified graphene oxide and further introduction of phenylboronic acid monomers with carboxyl by amino of polyethyleneimine, and finally the material is used for enrichment of glycoproteins. The specific process is as follows: firstly, Fe3O4 magnetic nanoparticles are prepared by a solvothermal method, and auto polymerization of polydopamine can be performed on surface of the Fe3O4 magnetic nanoparticles under alkaline conditions; the magnetic graphene oxide composite nano material can be prepared by hydrogen bond and PI-PI interaction between the polydopamine and graphene oxide, then the positively charged polyethyleneimine is immobilized onto the surface of the negatively charged magnetic graphene oxide by electrostatic self-assembly; and finally the phenylboronic-acid-functionalized magnetic graphene oxide composite nano material can be prepared by introduction of the phenylboronic acid monomers by amidation reaction, and the phenylboronic-acid-functionalized magnetic graphene oxide composite nano material is successively used in the enrichment of the glycoproteins in bioanalysis.
Owner:DALIAN INST OF CHEM PHYSICS CHINESE ACAD OF SCI

Luminol-luminescent functionalized nano-silver as well as preparation method and application for same

The invention discloses a luminol-luminescent functionalized nano-silver as well as a preparation method and an application for the same. The invention discloses a functionalized nano-silver, formed by connecting silver nanoparticles with luminol, wherein the luminol is connected to the surfaces of the silver nanoparticles via a covalent bond Ag-N. In the preparation method, nano-silver is prepared by directly reducing silver nitrate by luminol in the presence of ethanol, and luminol is used as a reducing agent and a protecting reagent simultaneously during synthesis process. The method has the advantages of being simple, fast, cheap and the like, as well as is a new technology for synthesising nano-silver at a temperature ranging from 25 to 40 DEG C. The particle size and shape of the nano-silver synthesised by the method can be regulated and controlled by the ratio of silver nitrate to luminol, and the obtained nano-silver has excellent chemiluminescent characteristic. The invention further discloses a bioanalysis probe based on the luminescent functionalized nano-silver, as well as an analysis method based on the probe and a kit. The functionalized nano-silver, the bioanalysis probe thereof, the analysis method and the kit disclosed by the invention can be used in the fields of immunoassay, nucleic acid analysis, molecular imaging, sensor etc.
Owner:UNIV OF SCI & TECH OF CHINA
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products