Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

13001 results about "Quantum" patented technology

In physics, a quantum (plural: quanta) is the minimum amount of any physical entity (physical property) involved in an interaction. The fundamental notion that a physical property may be "quantized" is referred to as "the hypothesis of quantization". This means that the magnitude of the physical property can take on only discrete values consisting of integer multiples of one quantum.

Multi-dimensional data protection and mirroring method for micro level data

The invention discloses a data validation, mirroring and error / erasure correction method for the dispersal and protection of one and two-dimensional data at the micro level for computer, communication and storage systems. Each of 256 possible 8-bit data bytes are mirrored with a unique 8-bit ECC byte. The ECC enables 8-bit burst and 4-bit random error detection plus 2-bit random error correction for each encoded data byte. With the data byte and ECC byte configured into a 4 bit×4 bit codeword array and dispersed in either row, column or both dimensions the method can perform dual 4-bit row and column erasure recovery. It is shown that for each codeword there are 12 possible combinations of row and column elements called couplets capable of mirroring the data byte. These byte level micro-mirrors outperform conventional mirroring in that each byte and its ECC mirror can self-detect and self-correct random errors and can recover all dual erasure combinations over four elements. Encoding at the byte quanta level maximizes application flexibility. Also disclosed are fast encode, decode and reconstruction methods via boolean logic, processor instructions and software table look-up with the intent to run at line and application speeds. The new error control method can augment ARQ algorithms and bring resiliency to system fabrics including routers and links previously limited to the recovery of transient errors. Image storage and storage over arrays of static devices can benefit from the two-dimensional capabilities. Applications with critical data integrity requirements can utilize the method for end-to-end protection and validation. An extra ECC byte per codeword extends both the resiliency and dimensionality.
Owner:HALFORD ROBERT

Doped elongated semiconductors, growing such semiconductors, devices including such semiconductors and fabricating such devices

A bulk-doped semiconductor that is at least one of the following: a single crystal, an elongated and bulk-doped semiconductor that, at any point along its longitudinal axis, has a largest cross-sectional dimension less than 500 nanometers, and a free-standing and bulk-doped semiconductor with at least one portion having a smallest width of less than 500 nanometers. Such a semiconductor may comprise an interior core comprising a first semiconductor; and an exterior shell comprising a different material than the first semiconductor. Such a semiconductor may be elongated and my have, at any point along a longitudinal section of such a semiconductor, a ratio of the length of the section to a longest width is greater than 4:1, or greater than 10:1, or greater than 100:1, or even greater than 1000:1. At least one portion of such a semiconductor may a smallest width of less than 200 nanometers, or less than 150 nanometers, or less than 100 nanometers, or less than 80 nanometers, or less than 70 nanometers, or less than 60 nanometers, or less than 40 nanometers, or less than 20 nanometers, or less than 10 nanometers, or even less than 5 nanometers. Such a semiconductor may be a single crystal and may be free-standing. Such a semiconductor may be either lightly n-doped, heavily n-doped, lightly p-doped or heavily p-doped. Such a semiconductor may be doped during growth. Such a semiconductor may be part of a device, which may include any of a variety of devices and combinations thereof, and, and a variety of assembling techniques may be used to fabricate devices from such a semiconductor. Two or more of such a semiconductors, including an array of such semiconductors, may be combined to form devices, for example, to form a crossed p-n junction of a device. Such devices at certain sizes may exhibit quantum confinement and other quantum phenomena, and the wavelength of light emitted from one or more of such semiconductors may be controlled by selecting a width of such semiconductors. Such semiconductors and device made therefrom may be used for a variety of applications.
Owner:PRESIDENT & FELLOWS OF HARVARD COLLEGE

Multicarrier Sub-Layer for Direct Sequence Channel and Multiple-Access Coding

Carrier Interferometry (CI) provides wideband transmission protocols with frequency-band selectivity to improve interference rejection, reduce multipath fading, and enable operation across non-continuous frequency bands. Direct-sequence protocols, such as DS-CDMA, are provided with CI to greatly improve performance and reduce transceiver complexity. CI introduces families of orthogonal polyphase codes that can be used for channel coding, spreading, and / or multiple access. Unlike conventional DS-CDMA, CI coding is not necessary for energy spreading because a set of CI carriers has an inherently wide aggregate bandwidth. Instead, CI codes are used for channelization, energy smoothing in the frequency domain, and interference suppression. CI-based ultra-wideband protocols are implemented via frequency-domain processing to reduce synchronization problems, transceiver complexity, and poor multipath performance of conventional ultra-wideband systems. CI allows wideband protocols to be implemented with space-frequency processing and other array-processing techniques to provide either or both diversity combining and sub-space processing. CI also enables spatial processing without antenna arrays. Even the bandwidth efficiency of multicarrier protocols is greatly enhanced with CI. CI-based wavelets avoid time and frequency resolution trade-offs associated with conventional wavelet processing. CI-based Fourier transforms eliminate all multiplications, which greatly simplifies multi-frequency processing. The quantum-wave principles of CI improve all types of baseband and radio processing.
Owner:GENGHISCOMM HLDG

Multicarrier sub-layer for direct sequence channel and multiple-access coding

Carrier Interferometry (CI) provides wideband transmission protocols with frequency-band selectivity to improve interference rejection, reduce multipath fading, and enable operation across non-continuous frequency bands. Direct-sequence protocols, such as DS-CDMA, are provided with CI to greatly improve performance and reduce transceiver complexity. CI introduces families of orthogonal polyphase codes that can be used for channel coding, spreading, and / or multiple access. Unlike conventional DS-CDMA, CI coding is not necessary for energy spreading because a set of CI carriers has an inherently wide aggregate bandwidth. Instead, CI codes are used for channelization, energy smoothing in the frequency domain, and interference suppression. CI-based ultra-wideband protocols are implemented via frequency-domain processing to reduce synchronization problems, transceiver complexity, and poor multipath performance of conventional ultra-wideband systems. CI allows wideband protocols to be implemented with space-frequency processing and other array-processing techniques to provide either or both diversity combining and sub-space processing. CI also enables spatial processing without antenna arrays. Even the bandwidth efficiency of multicarrier protocols is greatly enhanced with CI. CI-based wavelets avoid time and frequency resolution trade-offs associated with conventional wavelet processing. CI-based Fourier transforms eliminate all multiplications, which greatly simplifies multi-frequency processing. The quantum-wave principles of CI improve all types of baseband and radio processing.
Owner:GENGHISCOMM HLDG

METHOD FOR FABRICATION OF SEMIPOLAR (Al, In, Ga, B)N BASED LIGHT EMITTING DIODES

A yellow Light Emitting Diode (LED) with a peak emission wavelength in the range 560-580 nm is disclosed. The LED is grown on one or more III-nitride-based semipolar planes and an active layer of the LED is composed of indium (In) containing single or multi-quantum well structures. The LED quantum wells have a thickness in the range 2-7 nm. A multi-color LED or white LED comprised of at least one semipolar yellow LED is also disclosed.
Owner:RGT UNIV OF CALIFORNIA

Optical fiber with quantum dots

Holey optical fibers (e.g. photonic fibers, random-hole fibers) are fabricated with quantum dots disposed in the holes. The quantum dots can provide light amplification and sensing functions, for example. When used for sensing, the dots will experience altered optical properties (e.g. altered fluorescence or absorption wavelength) in response to certain chemicals, biological elements, radiation, high energy particles, electrical or magnetic fields, or thermal / mechanical deformations. Since the dots are disposed in the holes, the dots interact with the evanescent field of core-confined light. Quantum dots can be damaged by high heat, and so typically cannot be embedded within conventional silica optical fibers. In the present invention, dots can be carried into the holes by a solvent at room temperature. The present invention also includes solid glass fibers made of low melting point materials (e.g. phosphate glass, lead oxide glass) with embedded quantum dots.
Owner:LAMBDA LABORATORY INSTRUMENTS +1

Water-soluble fluorescent nanocrystals

A water soluble semiconductor nanocrystal capable of light emission is provided, including a quantum dot having a selected band gap energy, a layer overcoating the quantum dot, the overcoating layer comprised of a material having a band gap energy greater than that of the quantum dot, and an organic outer layer, the organic layer comprising a compound having a least one linking group for attachment of the compound to the overcoating layer and at least one hydrophilic group space apart from the linking group by a hydrophobic region sufficient to prevent electron charge transfer across the hydrophobic region. The particle size of the nanocrystal core is in the range of about 12.ANG. to about 150.ANG., with a deviation of less than 10% in the core. The coated nanocrystal exhibits photoluminescende having quantum yield of greater than 10% in water.
Owner:MASSACHUSETTS INST OF TECH

Highly luminescent color selective nanocrystalline materials

A coated nanocrystal capable of light emission includes a substantially monodisperse nanoparticle selected from the group consisting of CdX, where x=S, Se, Te and an overcoating of ZnY, where Y=S, Se, uniformly deposited thereon, said coated nanoparticle characterized in that when irradiated the particles exhibit photoluminescence in a narrow spectral range of no greater than about 60 nm, and most preferably 40 nm, at full width half max (FWHM). The particle size of the nanocrystallite core is in the range of about 20 Å to about 125 Å, with a deviation of less than 10% in the core. The coated nanocrystal exhibits photoluminescence having quantum yields of greater than 30%.
Owner:MASSACHUSETTS INST OF TECH

Distributed Quantum Encrypted Pattern Generation And Scoring

Transaction scoring is performed in a distributed manner across a client-server computing system. A computing system for processing a transaction includes a server system and a client system. The server system is arranged to process information associated with the transaction, while the client system communicates with the server system and includes a key engine which is arranged to generate keys. The client system and the server system are arranged to cooperate to make probabilistic determinations associated with the transaction. The client is arranged to send the keys generated by the key engine as a transaction to the server system.
Owner:VISA USA INC (US)

Method and apparatus for managing and uniformly maintaining pixel circuitry in a flat panel display

InactiveUS20080048951A1Accurate aging correctionStatic indicating devicesQuantum efficiencyDisplay design
The present invention describes a method and apparatus for measuring the voltage and current characteristics of the OLED pixel as it ages and correlating the measured data to the decrease in quantum efficiency and changes in OLED impedance over the life of the OLED, so that corrections can be made to the image drive system to prevent image sticking and color point drift. The method and apparatus of the present invention do not require any additional circuitry or changes in the display design. The circuitry of the present invention is implemented in the display driver integrated circuit (IC) chips. The basis of the invention is the luminance-current-voltage (LIV) curves which characterize the OLED materials over their life time. A series of these curves are stored in memory representing a OLED material at various ages. The apparatus of the present invention is used to measure driver voltages and currents for a pixel having an OLED, which measurements are then used to extract the voltage current curve for the OLED at any point in time. The extracted curve is compared to the aging curves stored in memory to determine the aging curve that best describes the measured present voltage current characteristic of the pixel. That aging curve is used to drive the pixel.
Owner:LEADIS TECH

Nanocrystal doped matrixes

Matrixes doped with semiconductor nanocrystals are provided. In certain embodiments, the semiconductor nanocrystals have a size and composition such that they absorb or emit light at particular wavelengths. The nanocrystals can comprise ligands that allow for mixing with various matrix materials, including polymers, such that a minimal portion of light is scattered by the matrixes. The matrixes of the present invention can also be utilized in refractive index matching applications. In other embodiments, semiconductor nanocrystals are embedded within matrixes to form a nanocrystal density gradient, thereby creating an effective refractive index gradient. The matrixes of the present invention can also be used as filters and antireflective coatings on optical devices and as down-converting layers. Processes for producing matrixes comprising semiconductor nanocrystals are also provided. Nanostructures having high quantum efficiency, small size, and / or a narrow size distribution are also described, as are methods of producing indium phosphide nanostructures and core-shell nanostructures with Group II-VI shells.
Owner:SAMSUNG ELECTRONICS CO LTD

Quantum dot light emitting layer

An inorganic light emitting layer having a plurality of light emitting cores, each core having a semiconductor material that emits light in response to recombination of holes and electrons, each such light emitting core defining a first bandgap; a plurality of semiconductor shells formed respectively about the light emitting cores to form core / shell quantum dots, each such semiconductor shell having a second bandgap wider than the first bandgap; and a semiconductor matrix connected to the semiconductor shells to provide a conductive path through the semiconductor matrix and to each such semiconductor shell and its corresponding light emitting core so as to permit the recombination of holes and electrons.
Owner:NANOCO TECH LTD

Optical devices featuring textured semiconductor layers

A semiconductor sensor, solar cell or emitter, or a precursor therefor, has a substrate and one or more textured semiconductor layers deposited onto the substrate. The textured layers enhance light extraction or absorption. Texturing in the region of multiple quantum wells greatly enhances internal quantum efficiency if the semiconductor is polar and the quantum wells are grown along the polar direction. Electroluminescence of LEDs of the invention is dichromatic, and results in variable color LEDs, including white LEDs, without the use of phosphor.
Owner:TRUSTEES OF BOSTON UNIV

System and method for multi-dimensional organization, management, and manipulation of data

The Quantum Matrix system is a multi-dimensional, multi-threaded exchange environment for data organization, management, and manipulation. Data is organized into a multi-dimensional structure of nodes. Nodes may represent data, absence of data, or another set of nodes. The multi-dimensional structure or portions of it can be automatically created from a file system. One or more associations are also defined for the multi-dimensional structure. An association indicates a relationship between a node and another node, data, or a set of nodes. The multi-dimensional structure is then displayed three-dimensionally and navigated. Relational logic, Boolean algebra, or a scripting language can be applied to the nodes, data, and associations to produce a resultant set of nodes. Furthermore, portions of the multi-dimensional structure can be isolated with the use of planes to ease navigation. Furthermore, Avatars may be displayed and used for collaborative purposes and to automate the navigation of the multi-dimensional structure.
Owner:QUANTUM MATRIX HLDG

Coated nanoparticles and quantum dots for solution-based fabrication of photovoltaic cells

CIGS absorber layers fabricated using coated semiconducting nanoparticles and / or quantum dots are disclosed. Core nanoparticles and / or quantum dots containing one or more elements from group IB and / or IIIA and / or VIA may be coated with one or more layers containing elements group IB, IIIA or VIA. Using nanoparticles with a defined surface area, a layer thickness could be tuned to give the proper stoichiometric ratio, and / or crystal phase, and / or size, and / or shape. The coated nanoparticles could then be placed in a dispersant for use as an ink, paste, or paint. By appropriate coating of the core nanoparticles, the resulting coated nanoparticles can have the desired elements intermixed within the size scale of the nanoparticle, while the phase can be controlled by tuning the stochiometry, and the stoichiometry of the coated nanoparticle may be tuned by controlling the thickness of the coating(s).
Owner:AERIS CAPITAL SUSTAINABLE IP

Post-deposition encapsulation of nanostructures: compositions, devices and systems incorporating same

ActiveUS20060040103A1Reduce and prevent other type of transmissionReduce probabilityMaterial nanotechnologyBoxes/cartons making machineryNanostructureNanometre
Ligand compositions for use in preparing discrete coated nanostructures are provided, as well as the coated nanostructures themselves and devices incorporating same. Methods for post-deposition shell formation on a nanostructure and for reversibly modifying nanostructures are also provided. The ligands and coated nanostructures of the present invention are particularly useful for close packed nanostructure compositions, which can have improved quantum confinement and / or reduced cross-talk between nanostructures.
Owner:WODEN TECH INC

Solid state lighting devices comprising quantum dots

Solid state lighting devices containing quantum dots dispersed in polymeric or silicone acrylates and deposited over a light source. Solid state lighting devices with different populations of quantum dots either dispersed in matrix materials or not are also provided. Also provided are solid state lighting devices with non-absorbing light scattering dielectric particles dispersed in a matrix material containing quantum dots and deposited over a light source. Methods of manufacturing solid state lighting devices containing quantum dots are also provided.
Owner:SAMSUNG ELECTRONICS CO LTD

Method of magnetic resonance imaging

A method of slice selective multiple quantum magnetic resonance imaging of an object is disclosed. The method is effected by implementing the steps of (a) applying a radiofrequency pulse sequence selected so as to select a coherence of an order n to the object, wherein n is zero, a positive or a negative integer other than ±1; (b) applying magnetic gradient pulses, so as to select a slice of the object to be imaged arid to create an image; and (c) acquiring a radiofrequency signal resulting from the object, so as to generate a magnetic resonance slice image of the object. The method provides slice selective multiple quantum magnetic resonance images of yet unprecedented quality in terms of contrast. The method is particularly useful for imaging connective tissues.
Owner:ENTERIS BIOPHARMA +1

Stably tethered structures of defined compositions with multiple functions or binding specificities

The present invention concerns methods and compositions for stably tethered structures of defined compositions with multiple functionalities and / or binding specificities. Particular embodiments concern stably tethered structures comprising a homodimer of a first monomer, comprising a dimerization and docking domain attached to a first precursor, and a second monomer comprising an anchoring domain attached to a second precursor. The first and second precursors may be virtually any molecule or structure, such as antibodies, antibody fragments, antibody analogs or mimetics, aptamers, binding peptides, fragments of binding proteins, known ligands for proteins or other molecules, enzymes, detectable labels or tags, therapeutic agents, toxins, pharmaceuticals, cytokines, interleukins, interferons, radioisotopes, proteins, peptides, peptide mimetics, polynucleotides, RNAi, oligosaccharides, natural or synthetic polymeric substances, nanoparticles, quantum dots, organic or inorganic compounds, etc. The disclosed methods and compositions provide a simple, easy to purify way to obtain any binary compound attached to any monomeric compound, or any trinary compound.
Owner:IBC PHARMACEUTICALS INC

Single-source precursors for ternary chalcopyrite materials, and methods of making and using the same

A single source precursor for depositing ternary I-III-VI2 chalcopyrite materials useful as semiconductors. The single source precursor has the I-III-VI2 stoichiometry “built into” a single precursor molecular structure which degrades on heating or pyrolysis to yield the desired I-III-VI2 ternary chalcopyrite. The single source precursors effectively degrade to yield the ternary chalcopyrite at low temperature, e.g. below 500° C., and are useful to deposit thin film ternary chalcopyrite layers via a spray CVD technique. The ternary single source precursors according to the invention can be used to provide nanocrystallite structures useful as quantum dots. A method of making the ternary single source precursors is also provided.
Owner:OHIO AEROSPACE INST +1

Solar cell with epitaxially grown quantum dot material

A monolithic semiconductor photovoltaic solar cell comprising a plurality of subcells disposed in series on an electrically conductive substrate. At least one subcell of the plurality of subcells includes an epitaxially grown self-assembled quantum dot material. The subcells are electrically connected via tunnel junctions. Each of the subcells has an effective bandgap energy. The subcells are disposed in order of increasing effective bangap energy, with the subcell having the lowest effective bandgap energy being closest to the substrate. In certain cases, each subcell is designed to absorb a substantially same amount of solar photons.
Owner:CYRIUM TECH INC +1

Systems, methods and devices for trusted transactions

The invention discloses a system for enhancing trust in transactions, most particularly in remote transactions between a plurality of transactional parties, for instance a seller and buyer(s) of goods and / or services over a public computer network such as the internet. Trust is disclosed to be a multivalent commodity, in that the trust that is to be enhanced relates to information about the subject matter of the transactions (e.g., the suitability of the goods and services sold), the bona fides of the supplier of the goods and services, the appropriateness of a pricing structure for a particular transaction or series of transactions, a quantum of additional transactional value that may be imparted to the transactional relationship, security of information exchange, etc. An important contributor to trust for such aspects of the transaction is disclosed to be the use of highly-secure steganographic computer processing means for data identification, authentication, and transmission, such that confidence in the transaction components is enhanced. By providing an integrated multivalent system for enhancing trust across a variety of categories (for a variety of transaction species, including those in which the need for trust is greater on the part of one party than of another, as well as those in which both require substantial trust enhancement), the invention reduces barriers to forming and optimizing transactional relationships.
Owner:WISTARIA TRADING INC

Functionalized matrixes for dispersion of nanostructures

Matrixes doped with semiconductor nanocrystals are provided. In certain embodiments, the semiconductor nanocrystals have a size and composition such that they absorb or emit light at particular wavelengths. The nanocrystals can comprise ligands that allow for mixing with various matrix materials, including polymers, such that a minimal portion of light is scattered by the matrixes. The matrixes are optionally formed from the ligands. The matrixes of the present invention can also be utilized in refractive index matching applications. In other embodiments, semiconductor nanocrystals are embedded within matrixes to form a nanocrystal density gradient, thereby creating an effective refractive index gradient. The matrixes of the present invention can also be used as filters and antireflective coatings on optical devices and as down-converting layers. Processes for producing matrixes comprising semiconductor nanocrystals are also provided. Nanostructures having high quantum efficiency, small size, and / or a narrow size distribution are also described, as are methods of producing indium phosphide nanostructures and core-shell nanostructures with Group II-VI shells.
Owner:NANOSYS INC

Quantum dot optical devices with enhanced gain and sensitivity and methods of making same

Optical and optoelectronic devices and methods of making same. Under one aspect, an optical device includes an integrated circuit an array of conductive regions; and an optically sensitive material over at least a portion of the integrated circuit and in electrical communication with at least one conductive region of the array of conductive regions. Under another aspect, a method of forming a nanocrystalline film includes fabricating a plurality of nanocrystals having a plurality of first ligands attached to their outer surfaces; exchanging the first ligands for second ligands of different chemical composition than the first ligands; forming a film of the ligand-exchanged nanocrystals; removing the second ligands; and fusing the cores of adjacent nanocrystals in the film to form an electrical network of fused nanocrystals. Under another aspect, a film includes a network of fused nanocrystals, the nanocrystals having a core and an outer surface, wherein the core of at least a portion of the fused nanocrystals is in direct physical contact and electrical communication with the core of at least one adjacent fused nanocrystal, and wherein the film has substantially no defect states in the regions where the cores of the nanocrystals are fused.
Owner:INVISAGE TECHNOLOGIES

Integrated photobioreactor-based pollution mitigation and oil extraction processes and systems

Integrated systems including a photobioreactor system designed to contain a liquid medium comprising at least one species of phototrophic organism therein, and a facility associated with extracting and / or processing oil extracted from mixtures of oil and solid material, such as an oil sands facility, are described. Processes for using a photobioreactor system as part of a gas-treatment process and system able to at least partially remove certain undesirable pollutants from a byproduct gas stream produced by an oil sands facility are also described. Examples of such pollutants that may be removed include compounds contained within combustion gases, e.g., CO2 and / or NOx. These pollutants processed with the photobioreactor system, and, in some embodiments, biomass produced with the photobioreactor system may be utilized to produce a fuel source (e.g., biodiesel) and cutting stock for further operation of or use in the oil sands facility. Such uses of certain embodiments can provide an efficient means for recycling carbon, thereby reducing CO2 emissions, fuel, and / or cutting stock requirements for a given quantum of energy produced. In addition, in some cases the photobioreactor can be integrated with a holding pond and waste heat from the oil extraction process can be used to maintain the photobioreactor temperature and / or provide energy for other processes. Accordingly, embodiments described herein can improve the overall environmental and economic profile of the oil sands facility.
Owner:GREENFUEL TECHNOLOGIES CORPORATION
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products