Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2454 results about "Micro mirror" patented technology

Multi-dimensional data protection and mirroring method for micro level data

The invention discloses a data validation, mirroring and error/erasure correction method for the dispersal and protection of one and two-dimensional data at the micro level for computer, communication and storage systems. Each of 256 possible 8-bit data bytes are mirrored with a unique 8-bit ECC byte. The ECC enables 8-bit burst and 4-bit random error detection plus 2-bit random error correction for each encoded data byte. With the data byte and ECC byte configured into a 4 bit×4 bit codeword array and dispersed in either row, column or both dimensions the method can perform dual 4-bit row and column erasure recovery. It is shown that for each codeword there are 12 possible combinations of row and column elements called couplets capable of mirroring the data byte. These byte level micro-mirrors outperform conventional mirroring in that each byte and its ECC mirror can self-detect and self-correct random errors and can recover all dual erasure combinations over four elements. Encoding at the byte quanta level maximizes application flexibility. Also disclosed are fast encode, decode and reconstruction methods via boolean logic, processor instructions and software table look-up with the intent to run at line and application speeds. The new error control method can augment ARQ algorithms and bring resiliency to system fabrics including routers and links previously limited to the recovery of transient errors. Image storage and storage over arrays of static devices can benefit from the two-dimensional capabilities. Applications with critical data integrity requirements can utilize the method for end-to-end protection and validation. An extra ECC byte per codeword extends both the resiliency and dimensionality.
Owner:HALFORD ROBERT

Method and apparatus for stereoscopic display using column interleaved data with digital light processing

The invention has two main embodiments, a first called column switching and blanking and a second embodiment called doubling. The first embodiment is a projector for displaying a stereoscopic image with projector using one or more digital micromirror devices positioned into a plurality of columns and rows. The projector itself includes a light source, an optical system, a video processing system and a data system for driving the micromirror devices. The data subsystem provides separate data to a plurality of column pairs of the micromirrors. The projector includes a stereoscopic control circuit having a first state of the control circuit for inputting a first eye view of the stereoscopic image and causing the micromirrors of a first column of each column pair to be in various on and off states during said first eye view of said stereoscopic image and for causing all of said micromirrors of a second column of each column pair to be in an off state during said first eye view of said stereoscopic image. A second state of the control circuit is used for inputting a second eye view of the stereoscopic image and causes the micromirrors of the second column of each column pair to be in various on and off states during the second eye view of the stereoscopic image and for causing all of the micromirrors of the first column of each column pair to be in an off state during the second eye view of said stereoscopic image. The second embodiment is a projector for displaying a stereoscopic image with the projector using one or more digital micromirror devices positioned into a plurality of columns and rows. The projector includes a light source, an optical system, a video processing system and a data system for driving said micromirror devices. The data subsystem provides separate data to a plurality of column pairs of the micromirrors. The projector includes a stereoscopic control circuit having a first state for inputting a first eye view of the stereoscopic image and causing each micromirror of each column pair to be in various but identical on and off states during said first eye view of said stereoscopic image. A second state of the control circuit for inputs a second eye view of the stereoscopic image and causes each micromirror of each column pair to be in various but identical on and off states during the second eye view of the stereoscopic image.
Owner:DIVELBISS ADAM W +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products