Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

4703results about "Laser optical resonator construction" patented technology

Coolerless photonic integrated circuits (PICs) for WDM transmission networks and PICs operable with a floating signal channel grid changing with temperature but with fixed channel spacing in the floating grid

ActiveUS20050249509A1Requirements for a hermetically sealed package are substantially relievedEasy to controlLaser optical resonator constructionSemiconductor laser arrangementsElectro-absorption modulatorHermetic packaging
A coolerless photonic integrated circuit (PIC), such as a semiconductor electro-absorption modulator/laser (EML) or a coolerless optical transmitter photonic integrated circuit (TxPIC), may be operated over a wide temperature range at temperatures higher then room temperature without the need for ambient cooling or hermetic packaging. Since there is large scale integration of N optical transmission signal WDM channels on a TxPIC chip, a new DWDM system approach with novel sensing schemes and adaptive algorithms provides intelligent control of the PIC to optimize its performance and to allow optical transmitter and receiver modules in DWDM systems to operate uncooled. Moreover, the wavelength grid of the on-chip channel laser sources may thermally float within a WDM wavelength band where the individual emission wavelengths of the laser sources are not fixed to wavelength peaks along a standardized wavelength grid but rather may move about with changes in ambient temperature. However, control is maintained such that the channel spectral spacing between channels across multiple signal channels, whether such spacing is periodic or aperiodic, between adjacent laser sources in the thermally floating wavelength grid are maintained in a fixed relationship. Means are then provided at an optical receiver to discover and lock onto floating wavelength grid of transmitted WDM signals and thereafter demultiplex the transmitted WDM signals for OE conversion.
Owner:INFINERA CORP

Tunable laser transmitter with internal wavelength grid generators

The present invention provides a continuously tunable external cavity laser (ECL) with a compact form factor and precise tuning to a selected center wavelength of a selected wavelength grid. The ECL may thus be utilized in telecom applications to generate the center wavelengths for any channel on the ITU or other optical grid. The ECL does not require a closed loop feedback. A novel tuning mechanism is disclosed which provides for electrical or mechanical tuning to a known position or electrical parameter, e.g., voltage, current or capacitance, with the required precision in the selected center wavelength arising as a result of a novel arrangement of a grid generator and a channel selector. The grid generator exhibits first pass bands which correspond to the spacing between individual channels of the selected wavelength grid and a finesse which suppresses side band modes of the laser. The channel selector exhibits second pass bands that are wider than the first pass bands. In an embodiment of the invention the second pass bands have a periodicity substantially corresponding with the separation between the shortest wavelength channel and the longest wavelength channel of the selected wavelength grid and a finesse which suppresses channels adjacent to the selected channel. The broad second pass bands of the channel selector reduce the sensitivity of the ECL to tuning variations about the selected channel, thus avoiding the requirement of a closed loop feedback system to control the channel selector.
Owner:NEWPORT CORP

Wavelength discretely tunable semiconductor laser

A wavelength discretely tunable semiconductor laser that addresses wide wavelength tuning range, is mode hopping free, has high output power, has fast wavelength switching time, is wavelength locking free and is relatively simple. Four exemplary embodiments disclosed herein utilize a wavelength discretely tunable semiconductor laser that comprises a discretely tunable filter and laser amplifier. In the first embodiment, the tuning element comprises a pair of cascade Fabry-Perot filters, each having a plurality of characteristic narrow transmission passbands that pass only the cavity mode under the passband. The spacing between the narrow transmission passbands are slightly different in one filter from the other filter so that only one passband from each filter can be overlapped in any given condition over the entire active element gain spectral range, thereby permitting lasing only at a single cavity mode passed by the cascade double filters. One of the two etalon filters can be made with a plurality of transmission passbands predetermined by industry, application and international standards, making this element an intra-cavity wavelength reference and eliminating further wavelength locking needs for the tunable laser. In a second embodiment, one of the two etalons is replaced by a wedge filter. The filter optical path change and thus the transmission passband shift are achieved by translating the wedge filter in a direction perpendicular to the optical axis. In a third embodiment, one of the two etalon filters is replaced by a polarization interference filter. The polarization interference filter consists of an electro-optically-tunable birefringent waveplate, a fixed birefringent waveplate, the laser cavity and T.E. polarization light emitted from the laser diode. In a fourth embodiment, the laser and wavelength tuning structure are integrated on a semiconductor substrate by epitaxy processes.
Owner:JIN HONG
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products