Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

94 results about "Finesse" patented technology

In contract bridge and similar games, a finesse is a card play technique which will enable a player to win an additional trick or tricks should there be a favorable position of one or more cards in the hands of the opponents.

Tunable laser transmitter with internal wavelength grid generators

The present invention provides a continuously tunable external cavity laser (ECL) with a compact form factor and precise tuning to a selected center wavelength of a selected wavelength grid. The ECL may thus be utilized in telecom applications to generate the center wavelengths for any channel on the ITU or other optical grid. The ECL does not require a closed loop feedback. A novel tuning mechanism is disclosed which provides for electrical or mechanical tuning to a known position or electrical parameter, e.g., voltage, current or capacitance, with the required precision in the selected center wavelength arising as a result of a novel arrangement of a grid generator and a channel selector. The grid generator exhibits first pass bands which correspond to the spacing between individual channels of the selected wavelength grid and a finesse which suppresses side band modes of the laser. The channel selector exhibits second pass bands that are wider than the first pass bands. In an embodiment of the invention the second pass bands have a periodicity substantially corresponding with the separation between the shortest wavelength channel and the longest wavelength channel of the selected wavelength grid and a finesse which suppresses channels adjacent to the selected channel. The broad second pass bands of the channel selector reduce the sensitivity of the ECL to tuning variations about the selected channel, thus avoiding the requirement of a closed loop feedback system to control the channel selector.
Owner:NEWPORT CORP

Digital amplifier with improved performance

A class D amplifier uses a summation of two or more PWM output stages to achieve an increased dynamic range and improved linearity for any given clock operating speed. The amplifier accepts a digital data stream as its input, such as from a compact disk, or other compatible media, at a data rate, Fa, that could be 44.1 kHz, 96 kHz, or any other rate appropriate for audio data. In the preferred embodiment, the input audio data resolution, N bits, would be split into two data samples, of J and K.Internal switching frequency, Fs, switches the PWM with an over sampling factor M, where Fs=M*Fa. The time resolution of the PWM is determined by a precision oscillator that operates at Fc=Fs*(max(J,K)-log2(M)+1).The J most significant bits would be routed to a power PWM stage operated at a DC voltage of VHI. The K least significant bits are routed to a finesse PWM stage operated at a DC voltage of VLO.The ratio of VLO to VHI will be appropriate for the ratio of K and J so the summation of the power PWM stage and the finesse PWM stage will provide the full range of N bits. This summation is accomplished with a low pass filter and time-division multiplexing of the two PWM stages.A micro controller (MCU) is used to apply a sample packet distribution algorithm to provide more resolution by reducing quantization noise in the audio band of interest. The MCU is also used to calibrate the VLO or VHI, or to calibrate the PWM timing of the two PWM stages to achieve appropriate performance.
Owner:GROVES JR WILLIAM HARRIS +1

Method and system for locking transmission wavelengths for lasers in a dense wavelength division multiplexer

The method and system operate to calibrate a transmission laser of the dense wavelength division multiplexer (DWDM) and to lock the laser to a selected transmission wavelength. In one example, the transmission laser is a widely tunable laser (WTL) to be tuned to one of a set of International Telecommunications Union (ITU) transmission grid lines for transmission through an optic fiber. To lock the WTL to an ITU grid line, a portion of the output beam from the WTL is routed through the etalon to split the beam into a set of transmission lines for detection by a detector. Another portion of the beam is routed directly to another detector. A wavelength-locking controller compares signals from the two detectors and adjusts the temperature of the etalon to align the wavelength of one of the transmission lines of the etalon with the wavelength of the output beam, then controls the WTL in a feedback loop to lock the laser to the etalon line. The wavelength-locking controller thereafter monitors the temperature of the etalon and keeps the temperature constant to prevent any wavelength drift in the etalon. In one example, the etalon is a silicon etalon configured to have finesse of about 20 and to provide a free spectral range of about 8 GHz. With these parameters, the system is able to lock the wavelength of the WTL to within a precision of about 0.2 GHz.
Owner:SPECTRASENSORS INC

Digital amplifier with improved performance

A class D amplifier uses a summation of two or more PWM output stages to achieve an increased dynamic range and improved linearity for any given clock operating speed. The amplifier accepts a digital data stream as its input, such as from a compact disk, or other compatible media, at a data rate, Fa, that could be 44.1 kHz, 96 kHz, or any other rate appropriate for audio data. In the preferred embodiment, the input audio data resolution, N bits, would be split into two data samples, of J and K. Internal switching frequency, Fs, switches the PWM with an over sampling factor M, where Fs=M*Fa. The time resolution of the PWM is determined by a precision oscillator that operates at Fc=Fs*(max(J,K)-log2(+1). The J most significant bits would be routed to a power PWM stage operated at a DC voltage of VHI. The K least significant bits are routed to a finesse PWM stage operated at a DC voltage of VLO. The ratio of VLO to VHI will be appropriate for the ratio of K and J so the summation of the power PWM stage and the finesse PWM stage will provide the full range of N bits. This summation is accomplished with a low pass filter and time-division multiplexing of the two PWM stages. A micro controller (MCU) is used to apply a sample packet distribution algorithm to provide more resolution by reducing quantization noise in the audio band of interest. The MCU is also used to calibrate the VLO or VHI, or to calibrate the PWM timing of the two PWM stages to achieve appropriate performance.
Owner:GROVES JR WILLIAM HARRIS +1

Method and system for locking transmission wavelengths for lasers in a dense wavelength division multiplexer utilizing a tunable etalon

The method and system operate to calibrate a transmission laser of the dense wavelength division multiplexer (DWDM) and to lock the laser to a selected transmission wavelength. In one example, the transmission laser is a widely tunable laser (WTL) to be tuned to one of a set of International Telecommunications Union (ITU) transmission grid lines for transmission through an optic fiber. To lock the WTL to an ITU grid line, a portion of the output beam from the WTL is routed through the etalon to split the beam into a set of transmission lines for detection by a detector. Another portion of the beam is routed directly to another detector. A wavelength-locking controller compares signals from the two detectors and adjusts the temperature of the etalon to align the wavelength of one of the transmission lines of the etalon with the wavelength of the output beam, then controls the WTL in a feedback loop to lock the laser to the etalon line. The wavelength-locking controller thereafter monitors the temperature of the etalon and keeps the temperature constant to prevent any wavelength drift in the etalon. In one example, the etalon is a silicon etalon configured to have finesse of about 20 and to provide a free spectral range of about 8 GHz. With these parameters, the system is able to lock the wavelength of the WTL to within a precision of about 0.2 GHz. In another example, the etalon is first calibrated during manufacture to determine a "set point" operating temperature sufficient to align transmission peaks of the etalon with desired ITU grid lines. The etalon is thereafter mounted within a WTL and the etalon is adjusted to the set point temperature so as to align transmission peaks of the etalon with the desired ITU grid lines to permit wavelength locking. This later technique allows for rapid switching between channels and obviates the need for a gas cell within the WTL.
Owner:SPECTRASENSORS INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products