Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

3127 results about "Passband" patented technology

A passband is the range of frequencies or wavelengths that can pass through a filter. For example, a radio receiver contains a bandpass filter to select the frequency of the desired radio signal out of all the radio waves picked up by its antenna. The passband of a receiver is the range of frequencies it can receive.

System and Method for Three Dimensional Mapping of Electrophysiology Information

An electrophysiology apparatus is used to measure electrical activity occurring in a heart of a patient and to visualize the electrical activity and / or information related to the electrical activity. A three-dimensional map of the electrical activity and / or the information related to the electrical activity is created. Exemplary maps include a time difference between action potentials at a roving electrode and a reference electrode, the peak-to-peak timing of action potentials at the roving electrode, the peak negative voltage of action potentials at the roving electrode, complex fractionated electrogram information, a dominant frequency of an electrogram signal, a maximum peak amplitude at the dominant frequency, a ratio of energy in one band of the frequency-domain to the energy in a second band of the frequency-domain, a low-frequency or high-frequency passband of interest, a frequency with the maximum energy in a passband, a number of peaks within a passband, an energy, power, and / or area in each peak, a ratio of energy and / or area in each peak to that in another passband, and a width of each peak in a spectrum. Colors, shades of colors, and / or grayscales are assigned to values of the parameters and colors corresponding to the parameters for the electrograms sampled by the electrodes are updated on the three-dimensional model.
Owner:ST JUDE MEDICAL ATRIAL FIBRILLATION DIV

Tunable laser transmitter with internal wavelength grid generators

The present invention provides a continuously tunable external cavity laser (ECL) with a compact form factor and precise tuning to a selected center wavelength of a selected wavelength grid. The ECL may thus be utilized in telecom applications to generate the center wavelengths for any channel on the ITU or other optical grid. The ECL does not require a closed loop feedback. A novel tuning mechanism is disclosed which provides for electrical or mechanical tuning to a known position or electrical parameter, e.g., voltage, current or capacitance, with the required precision in the selected center wavelength arising as a result of a novel arrangement of a grid generator and a channel selector. The grid generator exhibits first pass bands which correspond to the spacing between individual channels of the selected wavelength grid and a finesse which suppresses side band modes of the laser. The channel selector exhibits second pass bands that are wider than the first pass bands. In an embodiment of the invention the second pass bands have a periodicity substantially corresponding with the separation between the shortest wavelength channel and the longest wavelength channel of the selected wavelength grid and a finesse which suppresses channels adjacent to the selected channel. The broad second pass bands of the channel selector reduce the sensitivity of the ECL to tuning variations about the selected channel, thus avoiding the requirement of a closed loop feedback system to control the channel selector.
Owner:NEWPORT CORP

Mitigation of transmitter passive and active intermodulation products in real and continuous time in the transmitter and co-located receiver

A transmitter channel interference mitigation processing method for cancellation of intermodulation products are described. In one embodiment, a method comprising generating continuous and real time IMP cancellation signals (ICS) in the baseband digital signal set of the transmitter based on a transmitter signal set, combining digital IMP cancellation signals with a digital baseband transmitter signal set such that the digital cancellation signals, when converted to analog signals and transmitted as part of an analog transmitter signal set, are cancelled by and so cancel the IMPs generated by the non-linear components in the analog transmitter hardware, including digitally generating the IMP cancellation signals using a process based on a power series description of a non-linear process generating the IMPs, generating 3rd order IMP cancellation signals by digitally multiplying two or three signals of the transmitter signal set to create 3rd order IMP cancellation signals, generating 5th order IMP cancellation signals by digitally multiplying two or three or five signals of the transmitter signal set to create 5th order IMP cancellation signals, generating 7th order IMP cancellation signals by digitally multiplying two or three or five or seven signals of the transmitter signal set to create 7th order IMP cancellation signal, generating odd order IMP cancellation signals (ICS) by digitally multiplying an odd number of digital signals and combining multiplied digital signals with the transmitter baseband digital signals, creating IMP cancellation signals in the receiver, and cancelling one or both of active and passive IMPs generated in a transmitter path that fall within a receiver passband.
Owner:FINESSE WIRELESS LLC

Wavelength discretely tunable semiconductor laser

A wavelength discretely tunable semiconductor laser that addresses wide wavelength tuning range, is mode hopping free, has high output power, has fast wavelength switching time, is wavelength locking free and is relatively simple. Four exemplary embodiments disclosed herein utilize a wavelength discretely tunable semiconductor laser that comprises a discretely tunable filter and laser amplifier. In the first embodiment, the tuning element comprises a pair of cascade Fabry-Perot filters, each having a plurality of characteristic narrow transmission passbands that pass only the cavity mode under the passband. The spacing between the narrow transmission passbands are slightly different in one filter from the other filter so that only one passband from each filter can be overlapped in any given condition over the entire active element gain spectral range, thereby permitting lasing only at a single cavity mode passed by the cascade double filters. One of the two etalon filters can be made with a plurality of transmission passbands predetermined by industry, application and international standards, making this element an intra-cavity wavelength reference and eliminating further wavelength locking needs for the tunable laser. In a second embodiment, one of the two etalons is replaced by a wedge filter. The filter optical path change and thus the transmission passband shift are achieved by translating the wedge filter in a direction perpendicular to the optical axis. In a third embodiment, one of the two etalon filters is replaced by a polarization interference filter. The polarization interference filter consists of an electro-optically-tunable birefringent waveplate, a fixed birefringent waveplate, the laser cavity and T.E. polarization light emitted from the laser diode. In a fourth embodiment, the laser and wavelength tuning structure are integrated on a semiconductor substrate by epitaxy processes.
Owner:JIN HONG

Self-calibrating optical fiber pressure, strain and temperature sensors

Broadband energy incident on a transducer having partially or fully reflective surfaces separated by a gap which is greater than the coherence length of the broadband energy but smaller than one-half a coherence length of a band of energy within said broadband energy causes a portion of the spectral content of the broadband energy corresponding to a coherence length greater than twice the gap length to exhibit interference effects while the average power of the broadband energy remains unaffected. Splitting energy reflected from the transducer into two beams which are filtered at preferably similar center frequencies but with different pass bands yields beams which are radically different in sensitivity to changes in gap length. Analyzing the beams to derive a ratio of powers (since source intensity and fiber attenuation in a common fiber are thus self-cancelling) allows high accuracy and high resolution absolute measurement of temperature, pressure or strain. Effects of any of these physical parameters which are not of interest in a measurement can be fully compensated or made arbitrarily insignificant in a simple transducer structure of extremely small size. Use of broadband energy permits measurement over greater lengths of optical fiber.
Owner:VIRGINIA TECH INTPROP INC

Multi-mode - multi-band direct conversion receiver with complex i and q channel interference mitigation processing for cancellation of intermodulation products

Multi-mode-multi-band direct conversion receiver with complex I and Q channel interference mitigation processing for cancellation of intermodulation products are described. In one embodiment, a method comprising over sampling of the entire receiver passband to acquire the IMP source signals that can generate IMPs within the SOI, using these signals to generate a coherent complex I-Q channel estimates of the interference and (after phase and amplitude adjustment) using these estimates to cancel the SOI inband IMPs in the I and Q channels independently and simultaneously in near real time, generating estimates of 2nd and 3rd order IMP products, adjusting the phase and amplitude of the estimates and using the estimates to cancel the SOI inband IMPs on the I ad Q channels independently and simultaneously in real time or very near real time, sampling of the transmitter feed thru signal and blocking signals and computing the cross modulation products estimate and adjusting the phase and amplitude and using the estimate to cancel the SOI inband cross modulation products energy in real time or near real time in the I and Q channels of the receiver, using the cross modulation cancellation to cancel of the effects of the on chip transmitter feed thru to support building a single transceiver chip with full duplex operation with cancellation being done independently and simultaneously on the I and Q channels of the receiver, and creation of an estimate of the DC offset in the receiver and adjusting the amplitude of the DC offset in a near real time closed loop fashion to cancel the DC offset in the I and Q channels independently and simultaneously and adjusting the rate of update to match system parameters.
Owner:SMITH FRANCIS J
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products