Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

126 results about "Dielectric waveguides" patented technology

A dielectric slab waveguide consists of three dielectric layers with different refractive indices. Practical rectangular-geometry optical waveguides are most easily understood as variants of a theoretical dielectric slab waveguide, also called a planar waveguide.

Input/output coupling structure for dielectric waveguide having conductive coupling patterns separated by a spacer

ActiveUS7132905B2Less influenceReduce leakage and less of electromagnetic energyOne-port networksResonatorsCouplingConductive materials
Disclosed is an input / output coupling structure for coupling a printed circuit board with a dielectric waveguide having a dielectric body and a conductive film covering the dielectric body. The coupling structure comprises a first conductive pattern formed on the bottom surface of the dielectric waveguide to serve as an input / output electrode, in such a manner as to be surrounded directly by an exposed portion of the dielectric body and further by the conductive film formed around the outer periphery of the exposed portion, a spacer having a surface made substantially entirely of a conductive material and a portion for defining a given space, and a second conductive pattern formed on a principal surface of the printed circuit board and electrically connected to the microstrip line. The bottom surface of the dielectric waveguide is joined to the principal surface of the printed circuit board through the spacer, to allow the first and second conductive patterns to be located in opposed relation to one another and define the space therebetween in cooperation with the spacer. The present invention can provide a simplified structure for mounting a dielectric waveguide on a printed circuit-wiring board to couple the dielectric waveguide with a microstrip line of the dielectric waveguide, and achieve a mode conversion mechanism operable in a wide frequency band and less subject to the influence of the possible displacement between the microstrip line and the dielectric waveguide.
Owner:MURATA MFG CO LTD

Low profile active electronically scanned antenna (AESA) for ka-band radar systems

A vertically integrated Ka-band active electronically scanned antenna including, among other things, a transitioning RF waveguide relocator panel located behind a radiator faceplate and an array of beam control tiles respectively coupled to one of a plurality of transceiver modules via an RF manifold. Each of the beam control tiles includes a respective plurality of high power transmit/receive (T/R) cells as well as dielectric waveguides, RF stripline and coaxial transmission line elements. The waveguide relocator panel is preferably fabricated by a diffusion bonded copper laminate stack up with dielectric filling. The beam control tiles are preferably fabricated by the use of multiple layers of low temperature co-fired ceramic (LTCC) material laminated together. The waveguide relocator panel and the beam control tiles are designed to route RF signals to and from a respective transceiver module of four transceiver modules and a quadrature array of antenna radiators matched to free space formed in the faceplate. Planar type metal spring gaskets are provided between the interfacing layers so as to provide and ensure interconnection between mutually facing waveguide ports and to prevent RF leakage from around the perimeter of the waveguide ports. Cooling of the various components is achieved by a pair of planar forced air heat sink members which are located on either side of the array of beam control tiles. DC power and control of the T/R cells is provided by a printed circuit wiring board assembly located adjacent to the array of beam controlled tiles with solderless DC connections being provided by an arrangement of “fuzz button” electrical connector elements.
Owner:NORTHROP GRUMMAN SYST CORP

Input/output coupling structure for dielectric waveguide

Disclosed is an input/output coupling structure for coupling a printed circuit board with a dielectric waveguide having a dielectric body and a conductive film covering the dielectric body. The coupling structure comprises a first conductive pattern formed on the bottom surface of the dielectric waveguide to serve as an input/output electrode, in such a manner as to be surrounded directly by an exposed portion of the dielectric body and further by the conductive film formed around the outer periphery of the exposed portion, a spacer having a surface made substantially entirely of a conductive material and a portion for defining a given space, and a second conductive pattern formed on a principal surface of the printed circuit board and electrically connected to the microstrip line. The bottom surface of the dielectric waveguide is joined to the principal surface of the printed circuit board through the spacer, to allow the first and second conductive patterns to be located in opposed relation to one another and define the space therebetween in cooperation with the spacer. The present invention can provide a simplified structure for mounting a dielectric waveguide on a printed circuit-wiring board to couple the dielectric waveguide with a microstrip line of the dielectric waveguide, and achieve a mode conversion mechanism operable in a wide frequency band and less subject to the influence of the possible displacement between the microstrip line and the dielectric waveguide.
Owner:MURATA MFG CO LTD

Low profile active electronically scanned antenna (AESA) for Ka-band radar systems

A vertically integrated Ka-band active electronically scanned antenna including, among other things, a transitioning RF waveguide relocator panel located behind a radiator faceplate and an array of beam control tiles respectively coupled to one of a plurality of transceiver modules via an RF manifold. Each of the beam control tiles includes a respective plurality of high power transmit / receive (T / R) cells as well as dielectric waveguides, RF stripline and coaxial transmission line elements. The waveguide relocator panel is preferably fabricated by a diffusion bonded copper laminate stack up with dielectric filling. The beam control tiles are preferably fabricated by the use of multiple layers of low temperature co-fired ceramic (LTCC) material laminated together. The waveguide relocator panel and the beam control tiles are designed to route RF signals to and from a respective transceiver module of four transceiver modules and a quadrature array of antenna radiators matched to free space formed in the faceplate. Planar type metal spring gaskets are provided between the interfacing layers so as to provide and ensure interconnection between mutually facing waveguide ports and to prevent RF leakage from around the perimeter of the waveguide ports. Cooling of the various components is achieved by a pair of planar forced air heat sink members which are located on either side of the array of beam control tiles. DC power and control of the T / R cells is provided by a printed circuit wiring board assembly located adjacent to the array of beam controlled tiles with solderless DC connections being provided by an arrangement of “fuzz button” electrical connector elements.
Owner:NORTHROP GRUMMAN SYST CORP

Four-band multi-polarization co-aperture feed source

The invention relates to a four-band multi-polarization co-aperture feed source. The four-band multi-polarization co-aperture feed source is formed by combining a double linear polarization antenna of a Ku band and a double circular polarization antenna of a Ka band and comprises a conical horn, a Ku circular waveguide, a tuning screw, a Ku flange, a horizontal polarization power divider, a first flange, a vertical polarization power divider, a medium rod, a circular waveguide feed window, a stop screw, a transition section and a double circular polarization antenna. The antenna of the Ku band uses four ports for symmetrical feeding to improve the symmetrical characteristic of a directional diagram, a transmission waveguide of an electromagnetic field of the Ku band is used as the transition section of the electromagnetic field of the Ka band, and the resonance medium rod is embedded into the waveguide of the Ku band for transmitting electromagnetic waves of the Ka band so that compactness of the antenna is greatly improved. By means of dielectric waveguides and conical horn nesting technologies, the purposes of achieving antenna beam conformity and sharing one phase center are achieved, uniformities of directional diagrams and uniformities of the phase centers in four working bands are guaranteed, isolation among bands is increased, and the compactness of the antenna is improved.
Owner:BEIJING RES INST OF TELEMETRY +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products