Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

3908 results about "Photonic crystal" patented technology

A photonic crystal is a periodic optical nanostructure that affects the motion of photons in much the same way that ionic lattices affect electrons in solids. Photonic crystals occur in nature in the form of structural coloration and animal reflectors, and, in different forms, promise to be useful in a range of applications.

Light emitting device having a layer of photonic crystals and a region of diffusing material and method for fabricating the device

A light emitting device and method for fabricating the device utilizes a layer of photonic crystals and a region of diffusing material to enhance the light output of the device. The layer of photonic crystals is positioned over a light source, such as a light emitting diode die, and the region of diffusing material is positioned over the layer of photonic layer.
Owner:DOCUMENT SECURITY SYST

Mach-Zehnder interferometer using photonic band gap crystals

A photonic crystal optical switch having a periodic dielectric structure including at least one input waveguide. First and second waveguide arms branch from the input waveguide in which the relative optical path lengths of electromagnetic radiation within the arms are controlled by stimuli. At least one output waveguide that combines the electromagnetic radiation propagating within the first and second waveguide arms.
Owner:MASSACHUSETTS INST OF TECH

Fiber- or rod-based optical source featuring a large-core, rare-earth-doped photonic-crystal device for generation of high-power pulsed radiation and method

A method and apparatus use a photonic-crystal fiber having a very large core while maintaining a single transverse mode. In some fiber lasers and amplifiers having large cores problems exist related to energy being generated at multiple-modes (i.e., polygamy), and of mode hopping (i.e., promiscuity) due to limited control of energy levels and fluctuations. The problems of multiple-modes and mode hopping result from the use of large-diameter waveguides, and are addressed by the invention. This is especially true in lasers using large amounts of energy (i.e., lasers in the one-megawatt or more range). By using multiple small waveguides in parallel, large amounts of energy can be passed through a laser, but with better control such that the aforementioned problems can be reduced. An additional advantage is that the polarization of the light can be maintained better than by using a single fiber core.
Owner:LOCKHEED MARTIN CORP

Semiconductor photonic nano communication link apparatus

A CMOS compatible ten-gigabit-per-second region nano-waveguide included photonic communication link apparatus of low energy use per transmitted bit. An embodiment of the link includes an electrically pumped laser, an electro absorption modulator and a photodetector for the 1.5 to 2.0 micrometer infrared spectral region; omission of the separate electro absorption modulator is additionally disclosed. Each of these three nano-scale elements preferably includes active semiconductor crystal material situated in a preferably Silicon resonator within a nano-strip waveguide. The resonator is defined by dispersed resonator mirrors having tapered separation distance one dimensional photonic crystal lattice apertures of oxide holes or slots. Each of the three devices may be a semiconductor heterodiode pumped or controlled by laterally disposed wings enclosing the resonator to form a lateral PIN heterodiode for current injection or high E-field generation depending on bias and composition conditions selected.
Owner:US SEC THE AIR FORCE THE

Optical diffraction grating

PCT No. PCT / GB97 / 00817 Sec. 371 Date Apr. 13, 1998 Sec. 102(e) Date Apr. 13, 1998 PCT Filed Mar. 24, 1997 PCT Pub. No. WO97 / 36198 PCT Pub. Date Oct. 2, 1997An optical diffraction grating is formed from a region of photonic crystalline material Light is coupled into the photonic crystalline material, and the grazingly emergent output beam is collected. The photonic crystalline material may include an array of holes formed in a substrate of dielectric material, e.g., InP, and integrated with planar waveguide structures.
Owner:IPG PHOTONICS CORP

Splicing and connectorization of photonic crystal fibres

A method of coupling a spliceable optical fibre for transmission of light in its longitudinal direction to an optical component, the method comprising (A) providing the spliceable optical fibre, said spliceable optical fibre comprising: (a) a core region (10, 20, 25, 30, 110); and (b) a microstructured cladding region, said cladding region surrounding said core region and comprising: (b1) an inner cladding region with inner cladding features (13, 22, 112) arranged in an inner cladding background material (11, 21, 111) with a refractive index n1, said inner cladding features comprising thermally collapsible holes or voids, and (b2) an outer cladding region with an outer cladding background material (12, 24, 114) with a refractive index n2; said spliceable optical fibre having at least one end; (B) collapsing said thermally collapsible holes or voids by heating said least one end of said spliceable optical fibre; and (C) coupling said collapsed spliceable optical fibre end to the optical component. A spliceable optical fibre; a preform for producing a spliceable optical fibre; a method of producing a spliceable optical fibre comprising drawing of the preform; a heat-treated spliceable optical fibre; an article comprising a spliceable optical fibre is further disclosed.
Owner:CRYSTAL FIBRE AS

Lighting system with high and improved extraction efficiency

In an epitaxial structure of a solid state lighting system, electrical current injection into the active layer is used to excite the photon emission. The present invention employs a unique waveguide layer in the epitaxial structure for trapping the light generated by the active layer in the fundamental waveguide mode. Multiple photonic crystal regions with different characteristics located either outside or inside one or more current injection regions extract photons from the waveguide layer(s). The present invention creates solid state lighting with high optical output and high power efficiency.
Owner:DICON FIBEROPTICS

Tunable Photonic Crystal Device

This application describes a tunable photonic crystal device based on the electrical actuation of photonic crystal films. This device displays non-bleachable structural color, reflecting narrow bands of wavelengths tuned throughout the entire visible spectrum by expansion and contraction of the photonic crystal lattice
Owner:THE GOVERNINIG COUNCIL OF THE UNIV OF TORANTO

Color display device

The present invention provides a reflective color display device which can display multiple color states, without the disadvantages associated with previously known color display devices. The display fluid of the present invention comprises (a) black and white electrophoretic particles which are oppositely charged and (b) charged color-generating particles having photonic crystal characteristics, all of which are dispersed in a solvent or solvent mixture.
Owner:E INK CALIFORNIA

Multi-segment photonic-crystal-rod waveguides for amplification of high-power pulsed optical radiation and associated method

A method and apparatus use a photonic-crystal fiber having a very large core while maintaining a single transverse mode. In some fiber lasers and amplifiers having large cores problems exist related to energy being generated at multiple-modes (i.e., polygamy), and of mode hopping (i.e., promiscuity) due to limited control of energy levels and fluctuations. The problems of multiple-modes and mode hopping result from the use of large-diameter waveguides, and are addressed by the invention. This is especially true in lasers using large amounts of energy (i.e., lasers in the one-megawatt or more range). By using multiple small waveguides in parallel, large amounts of energy can be passed through a laser, but with better control such that the aforementioned problems can be reduced. An additional advantage is that the polarization of the light can be maintained better than by using a single fiber core.
Owner:LOCKHEED MARTIN CORP

CATALYST-FREE GROWTH OF GaN NANOSCALE NEEDLES AND APPLICATION IN InGaN/GaN VISIBLE LEDS

Exemplary embodiments provide a scalable process for the growth of large scale and uniform III-N nanoneedle arrays with precise control of the position, cross sectional shape and / or dimensions for each nanoneedle. In an exemplary process, a plurality of nanoneedle array can be formed by growing one or more semiconductor material in a plurality of patterned rows of apertures with a predetermined geometry. The plurality of patterned rows of apertures can be formed though a thick selective nanoscale growth mask, which can later be removed to expose the plurality of nanoneedle arrays. The plurality of nanoneedle arrays can be connected top and bottom by a continuous coalesced epitaxial film, which can be used in a planar semiconductor process or be further configured as a photonic crystal to improve the output coupling of nanoscale optoelectronic devices such as LEDs and / or lasers.
Owner:RGT UNIVESITY OF NEW MEXICO

Compressible Photonic Crystal

A compressible photonic crystal comprising a polymer with an ordered array of voids, the photonic crystal having a reflectance in a first wavelength range for light incident to its incident surface and its opposing incident surface; wherein compression against at least a portion of at least one of the surfaces shifts the reflectance to a second wavelength range in at least that portion of that surface. The crystal may be used in authentication devices of various types.
Owner:THE GOVERNINIG COUNCIL OF THE UNIV OF TORANTO +1

Electrically switchable polymer-dispersed liquid crystal materials

A method for preparing electro-optical polymer-liquid crystal photonic crystals, comprising: disposing between at least two optically transparent electrode plates, a polymer-dispersed liquid crystal material that comprises, before exposure:(a) a polymerizable monomer comprising at least one acrylate;(b) a liquid crystal;(c) a chain-extending monomer;(d) a coinitiator;(e) a photoinitiator; and(f) a long chain aliphatic acid;and exposing this polymer-dispersed liquid crystal material to light in an interference pattern.
Owner:LEIDOS

Grown photonic crystals in semiconductor light emitting devices

A photonic crystal is grown within a semiconductor structure, such as a III-nitride structure, which includes a light emitting region disposed between an n-type region and a p-type region. The photonic crystal may be multiple regions of semiconductor material separated by a material having a different refractive index than the semiconductor material. For example, the photonic crystal may be posts of semiconductor material grown in the structure and separated by air gaps or regions of masking material. Growing the photonic crystal, rather than etching a photonic crystal into an already-grown semiconductor layer, avoids damage caused by etching which may reduce efficiency, and provides uninterrupted, planar surfaces on which to form electric contacts.
Owner:LUMILEDS

Micro-optics for article identification

InactiveUS7006294B2Deteriorates reproduction qualityQuality improvementOther printing matterMirrorsGratingPhotonic crystal
The present invention provides methods and compositions for authentication of articles and counterfeit deterrence using non-holographic micro-optics and microstructures having a surface relief greater than a few microns. Embodiments of the present invention disclose a range of distinctive optical effects obtained from micro-optic systems incorporating micro lenses, non-imaging collectors, prisms, wave guides, mirrors, gratings, structural interference filters, and photonic crystal microstructures.
Owner:PRINTPACK ILLINOIS

Self-waveguide optical circuit

Disclosed herein is a self-waveguide optical circuit for forming optical paths by propagating rays or electromagnetic waves comprising: photonic crystals having a dielectric constant periodic structure or a dielectric constant semi-periodic structure having a period substantially corresponding to a wavelength of propagation rays, and optical paths formed by establishing a crystal direction of the photonic crystal to level the dispersion surface of the photonic crystal for obtaining a bundle of parallel rays. In accordance with the present invention, elevation of characteristics such as miniaturization, high integration, high speed operation and transmission efficiency can be obtained because a bundle of parallel rays can be obtained without forming crooked parts having an excessive curvature radius.
Owner:NEC CORP

Superparamagnetic colloidal nanocrystal structures

Monodisperse colloidal nanocrystal clusters of magnetite (Fe3O4) with tunable sizes from about thirty to about three hundred nanometers have been synthesized using a high-temperature hydrolysis process. The colloidal nanocrystal clusters are capped with polyelectrolytes, and highly water soluble. Each cluster is composed of many single magnetite crystallites, thus retaining the superparamagnetic behavior at room temperature. The combination of superparamagnetic property, high magnetization, and high water dispersibility makes the colloidal nanocrystal clusters ideal candidates for various important biomedical applications such as drug delivery and bioseparation. The present invention is further directed to methods for forming colloidal photonic crystals from both aqueous and nonaqueous solutions of the superparamagnetic colloidal nanocrystal clusters with an external magnetic field applied thereto. The diffraction of the photonic crystals can be tuned from near infrared to visible and further ultraviolet spectral region by varying the external magnetic field.
Owner:RGT UNIV OF CALIFORNIA

Fourier scattering methods for encoding microbeads and methods and apparatus for reading the same

A method and apparatus for reading a microbead having a code thereon is provided wherein the code is projected on and read from a Fourier plane. The microbead may be 1-1000 microns (um) or smaller in feature size. The code is projected on the Fourier plane by scattering input light off the microbead. The scattered light from the microbead is directed through an optical arrangement having a transform lens for projecting the code on the Fourier plane, and read on the Fourier plane using a charge coupled device (CCD) or other similar device. The code may include periodic layers of material having different refractivities or phase, including index of refraction differences; periodic spatial modulations having a different phase or amplitude; a periodic binary phase change used to code information in the Fourier plane; a photonic crystal used to encode the information on the microbead, wherein a pattern of holes causes interference between incident and scattered light to form spatial and spectral patterns in the far field that are unique to the pattern of holes; or may be formed in the microbead using a single photoactive inner region, a series of longitudinal holes, different fluorescence regions, or concentric rings of material in a preform.
Owner:ILLUMINA INC

Bistable all optical devices in non-linear photonic crystals

A bistable photonic crystal configuration comprises a waveguide sided coupled to a single-mode cavity. This configuration can generate extremely high contrast between the bistable states in its transmission with low input power. All-optical switching action is also achieved in a nonlinear photonic crystal cross-waveguide geometry, in which the transmission of a signal can be reversibly switched on and off by a control input, or irreversibly switched, depending on the input power level.
Owner:THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIV +1

High efficiency light emitting diode (LED) with optimized photonic crystal extractor

A high efficiency, and possibly highly directional, light emitting diode (LED) with an optimized photonic crystal extractor. The LED is comprised of a substrate, a buffer layer grown on the substrate (if needed), an active layer including emitting species, one or more optical confinement layers that tailor the structure of the guided modes in the LED, and one or more diffraction gratings, wherein the diffraction gratings are two-dimensional photonic crystal extractors. The substrate may be removed and metal layers may be deposited on the buffer layer, photonic crystal and active layer, wherein the metal layers may function as a mirror, an electrical contact, and / or an efficient diffraction grating.
Owner:RGT UNIV OF CALIFORNIA

System and method for enhancing light emissions from light packages by adjusting the index of refraction at the surface of the encapsulation material

Light emission from a light package, such as from an LED light package, is enhanced by a system and method for adjusting the refractive index at the surface of the encapsulating material surrounding the light source. The surface refractive index is changed to better match the index within the encapsulating material with the index of the media surrounding the encapsulating material. In one embodiment, the index is adjusted by roughing the surface of the encapsulating material. In another embodiment, a separate layer is created having a corrective index of refraction. The separate layer can comprise photonic crystals, if desired. In some embodiments the adjusting will achieve a graded index of refraction.
Owner:DOCUMENT SECURITY SYST

Spectral-beam combining for high-power fiber-ring-laser systems

ActiveUS8526110B1Reduce energy absorptionReduce and prevent chromatic dispersionLaser detailsOptical elementsDielectricGrating
A ring-laser system that includes a plurality of ring-laser gain elements and a spectral-beam-combining output stage configured to combine a plurality of beams coming from the gain elements into an output beam and that includes chromatic-dispersion compensation. In some embodiments, the output stage includes a plurality of highly reflective dielectric-coated focussing elements. In some embodiments, the output stage includes a plurality of high-efficiency dielectric-coated grating elements. In some embodiments, the output stage includes a mostly reflective but partially transmissive output mirror and a highly reflective beam-reversing mirror configured to reflect a majority of a backward-traveling signal beam such that it becomes forward traveling. In some embodiments, each gain element further includes a photonic-crystal-rod power amplifier. Some embodiments have an amplitude modulator configured to pulse the plurality of beams, and a timing controller configured to synchronize the pulses of the plurality of beams. Some embodiments further include a non-linear wavelength-conversion device.
Owner:LOCKHEED MARTIN CORP

Optoelectronic substrate

An optoelectronic substrate comprises an electronic device, an optical device, and an optical wiring layer, the optical wiring layer comprising a photonic crystal. An optoelectronic substrate comprises an electronic device, an optical device, and an optical wiring layer, wherein the optical wiring layer is comprised of a periodic structure having a repeating period nearly equal to or smaller than the wavelength of light employed for signal transmission. An optoelectronic substrate comprises an electronic device, an optical device, an electric wiring connected to the electronic device, an optical wiring layer, and a base plate, wherein the optical wiring layer is employed as an insulating layer between the base plate and the electric wiring.
Owner:CANON KK

Waveguiding structures with embedded microchannels and method for fabrication thereof

The invention provides a method for fabricating planar waveguiding structures with embedded microchannels. The method includes the step of depositing, over a planar template having at least one indented feature comprising a ridge of a first optical material and a narrow trench adjacent thereto, a second optical material, and the step of subsequent annealing thereof, so that an embedded hollow microchannel forms within the trench. The method provides planar structures wherein the ridge and the embedded microchannel cooperate to form an optical waveguiding structure having a waveguiding direction collinear with the embedded microchannel. Embodiments of the method for forming microfluidic devices integrating ridge waveguides with hollow microchannels having surface access points for fluid delivery, and for forming photonic crystals, are disclosed together with corresponding device embodiments.
Owner:HER MAJESTY THE QUEEN & RIGHT OF CANADA REPRESENTED BY THE MIN OF IND THROUGH THE COMM RES CENT

Light emitting diode structure having photonic crystals

A light emitting diode (LED) structure includes a substrate with a surface and cylindrical photonic crystals, a first type doping semiconductor layer, a first electrode, a light emitting layer, a second type doping semiconductor layer and a second electrode. The first type doping semiconductor layer is formed on the substrate to cover the photonic crystals. The light emitting layer, the second type doping semiconductor layer and the second electrode are sequentially formed on a portion of the first type doping semiconductor layer. The first electrode is formed on the other portion of the first type doping semiconductor layer without being covered by the light emitting layer. Because the substrate with photonic crystals can improve the epitaxial quality of the first type doping semiconductor layer and increase the energy of the light forwardly emitting out of the LED, the light emitting efficiency of the LED is effectively enhanced.
Owner:FORMOSA EPITAXY INCORPORATION +1

Nanophotonic devices based on quantum systems embedded in frequency bandgap media

The present invention describes nanophotonic materials and devices for both classical and quantum optical signal processing, transmission, amplification, and generation of light, which are based on a set of quantum systems having a discrete energy levels, such as atoms, molecules, or quantum dots, embedded in a frequency bandgap medium, such as artificial photonic crystals (photonic bandgap materials) or natural frequency dispersive media, such as ionic crystals, molecular crystals, or semiconductors, exhibiting a frequency (photonic) bandgap for propagating electromagnetic modes coupled to optical transitions in the quantum systems. If the frequency of one of optical transitions, called the working transition, lies inside the frequency bandgap of the medium, then spontaneous decay of the working transition into propagating photon modes is completely suppressed. Moreover, the excitation of the working transition and a photon form a photon-quantum system bound state lying inside the photonic bandgap of the medium, in which radiation is localized in the vicinity of the quantum system. In a quantum system “wire” or a quantum systemwaveguide”, made of spatially disordered quantum systems, or in a chain quantum system waveguide made of a periodically ordered identical quantum systems, wave functions of the photon-quantum system bound states localized on different quantum systems overlap each other and develop a photonic passband lying inside bandgap of the photonic bandgap medium. Photons with frequencies lying inside the photonic passband propagate along the quantum system waveguide. Since the working transition cannot be excited twice, the passband photons interact with each other extremely strongly both in one waveguide and in different waveguides that are located sufficiently close to each other. These unique nonlinear properties of the quantum system waveguides are proposed to use for engineering key nanophotonic devices, such as all-optical and electro-optical switches, modulators, transistors, control-NOT logic gates, nonlinear directional couplers, electro-optical modulators and converters, generators of entangled photon states, passband optical amplifiers and lasers, as well as all-optical integrated circuits for both classical and quantum optical signal processing, including quantum computing.
Owner:ALTAIR CENT

Widely wavelength tuneable polychrome colloidal photonic crystal device

The present invention discloses a widely wavelength tunable polychrome colloidal photonic crystal device whose optical Bragg diffraction stop bands and higher energy bands wavelength, width and intensity can be tuned in a continuous and fine, rapid and reversible, reproducible and predictable fashion and over a broad spectral range by a controlled expansion or contraction of the colloidal photonic lattice dimension, effected by a predetermined change in the electronic configuration of the composite material. In its preferred embodiment, the material is a composite in the form of a film or a patterned film or shape of any dimension or array of shapes of any dimension comprised of an organized array of microspheres in a matrix of a cross-linked metallopolymer network with a continuously variable redox state of charge and fluid content. The chemo-mechanical and electro-mechanical optical response of the colloidal photonic crystal-metallopolymer gel is exceptionally fast and reversible, attaining its fully swollen state from the dry shrunken state and vice versa on a sub-second time-scale. These composite materials can be inverted by removal of the constituent microspheres from the aforementioned colloidal photonic crystal metallopolymer-gel network to create a macroporous metallopolymer-gel network inverse colloidal photonic crystal film or patterned film or shape of any dimension optical Bragg diffraction stop bands and higher energy bands wavelength, width and intensity can be redox tuned in a continuous and fine, rapid and reversible, reproducible and predictable fashion and over a broad spectral range by a controlled expansion or contraction of the colloidal photonic lattice dimensions.
Owner:THE GOVERNINIG COUNCIL OF THE UNIV OF TORANTO

Metal nano-void photonic crystal for enhanced raman spectroscopy

A planar optical platform for generating a Raman signal from a foreign object comprises an input region and an output region, for receiving and extracting optical radiation, optically coupled to a plasmonic band structure region. The plasmonic band structure region comprises a layer of a first material, having a first refractive index, patterned with an array of sub-regions of a second material, having a second refractive index, wherein a side-wall of each sub-region is coated with a metallodielectric layer. The array of sub-regions gives rise to a plasmonic band structure and, in use, each sub-region confines a plasmon resonance excited by optical radiation coupled into the plasmonic band structure region, which gives rise to a Raman signal from a foreign object placed proximate the plasmonic band structure region. The platform may be incorporated into a spectroscopic measurement system and is particularly useful for surface-enhanced Raman spectroscopy of analyte molecules.
Owner:D3 TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products