Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

6150results about "Glass making apparatus" patented technology

Multicore optical fibre

An optical fiber for transmitting radiation comprising two or more core regions, two or more core regions, each core region comprising a substantially transparent core material and having a core refractive index, a core length, and a core diameter, wherein said core regions are arranged within a cladding region, said cladding region comprising a length of first substantially transparent cladding material, having a first refractive index, wherein said first substantially transparent cladding material has an array of lengths of a second cladding material embedded along its length, wherein the second cladding material has a second refractive index which is less than said first refractive index, such that radiation input to said fiber propagates along at least one of said core regions. The cladding region and the core regions may be arranged such that radiation input to said optical fiber propagates along one or more said lengths of said core regions in a single mode of propagation. The optical fiber may be used as a bend sensor, a spectral filter or a directional coupler. The invention also relates to a method of manufacturing a multicore optical fiber.
Owner:NKT RES & INNOVATION

Optical coupler, a method of its fabrication and use

An optical coupler for coupling light from at least two input fibers into one output fiber and a method of fabricating and use of an optical coupler. The coupler comprises a) an input section comprising an output end face at one end of the bundling-length of input fibers; and b) an output section comprising an output fiber comprising a confining region for confining light propagated in the input fibers and a surrounding cladding region and having an input end face; wherein the output end face of said input section is optically coupled to the input end face of the output section and at least the confining region of the output fiber is tapered down from a first cross sectional area at the input end face to a second, smaller cross sectional area over a tapering-length of the output fiber.
Owner:CRYSTAL FIBRE AS

Holey optical fibres

An optical fiber structure having a holey fiber arranged in a holey outer support structure made up of holey tubes encased in a thin walled outer jacket. The holey fiber may have a solid core surrounded by a holey cladding having a plurality of rings of holes. With the invention it is possible to produce robust, coated and jacketed fibers with microstructured core features of micrometer size relatively easily using existing fiber fabrication technology. This improvement is a result of the outer holey structure which reduces the thermal mass of the supporting structure and makes it possible to reliably and controllably retain small hole features during the fiber fabrication process.
Owner:UNIV OF SOUTHAMPTON

Manufacture method for polarization maintaining fiber and polarization maintaining fiber

The invention provides a manufacture method for polarization maintaining fiber and a polarization maintaining fiber, and relates to optical waveguide fibers in the field of fiber-optical communication and fiber optical sensors. The method comprises the following steps that: (1) two oppositely arranged open slots with a same shape are inwardly provided at a side surface of a glass mother rod, stress rods are machined to obtain a shape matching the open slots, and the centers of the cross sections of the two open slots and the center of circle in the cross section of the glass mother rod are in a same line; (2) the stress rods are respectively inserted into each open slot on the glass mother rod, and the assembled glass mother rod and stress rods are put in a cannula to form a preformed rod of the polarization maintaining fiber; (3) the preformed rod of the polarization maintaining fiber is drew to form the polarization maintaining fiber. According to the invention, the glass mother rod is provided with the open slots, and the stress rods are embedded in the open slots, thereby obtaining high process repeatability; inner surfaces of the open slots have high fineness, and the open slots have good symmetry, thereby improving processing efficiency; therefore, the optical performance and reliability of the polarization maintaining fiber are substantially improved.
Owner:RUIGUANG TELECOMM TECH CO LTD

Polarization-maintaining optical fiber, method of manufacturing polarization-maintaining optical-fiber connecting portion, and polarization-maintaining optical-fiber connecting portion

A polarization-maintaining optical fiber includes a core region and a cladding region formed around the core region. The cladding region has a refractive index lower than a refractive index of the core region. A refractive index profile of the core region is either one of a step shaped or a concave shaped. The cladding region includes two holes formed in such a manner that a shortest distance from the core region is virtually zero at locations in opposite to each other across the core region.
Owner:FURUKAWA ELECTRIC CO LTD

Single mode optical fiber

A large core photonic crystal fiber for transmitting radiation having a core comprising a substantially transparent core material and having a core diameter of at least 5 mu. The fiber also comprises a cladding region surrounding the length of core material, wherein the cladding region comprises a first substantially transparent cladding material, having a first refractive index, and wherein the first substantially transparent cladding material has embedded along its length a substantially periodic array of holes, wherein the holes are filled with a second cladding material having a second refractive index less than the first refractive index, such that radiation input to the optical fiber is transmitted along the length of the core material in a single mode of propagation. In a preferred embodiment, the core diameter may be at least 20 mu, and may be as large as 50 mu. The fiber is capable of transmitting higher power radiation than conventional fibres, whilst maintaining propagation in a single mode. The core material may be doped with a material capable of providing amplification under the action of pump radiation input to the fiber. The invention also relates to a fiber amplifier and a fiber laser comprising a doped large core photonic crystal fiber. The fiber may also be used in a system for transmitting radiation comprising a plurality of lengths of large core photonic crystal fiber, separated by large core photonic crystal fiber amplifiers, such that the power of radiation transmitted through the system is maintained above a predetermined threshold power.
Owner:NKT RES & INNOVATION

Microstructured optical fibers and methods

Microstructured optical fiber and method of making. Glass soot is deposited and then consolidated under conditions which are effective to trap a portion of the consolidation gases in the glass to thereby produce a non-periodic array of voids which may then be used to form a void containing cladding region in an optical fiber. Preferred void producing consolidation gases include nitrogen, argon, CO2, oxygen, chlorine, CF4, CO, SO2 and mixtures thereof.
Owner:CORNING INC

Microstructured optical fibers and methods

Microstructured optical fiber and method of making. Glass soot is deposited and then consolidated under conditions which are effective to trap a portion of the consolidation gases in the glass to thereby produce a non-periodic array of voids which may then be used to form a void containing cladding region in an optical fiber. Preferred void producing consolidation gases include nitrogen, argon, CO2, oxygen, chlorine, CF4, CO, SO2 and mixtures thereof.
Owner:CORNING INC

Fiber- or rod-based optical source featuring a large-core, rare-earth-doped photonic-crystal device for generation of high-power pulsed radiation and method

A method and apparatus use a photonic-crystal fiber having a very large core while maintaining a single transverse mode. In some fiber lasers and amplifiers having large cores problems exist related to energy being generated at multiple-modes (i.e., polygamy), and of mode hopping (i.e., promiscuity) due to limited control of energy levels and fluctuations. The problems of multiple-modes and mode hopping result from the use of large-diameter waveguides, and are addressed by the invention. This is especially true in lasers using large amounts of energy (i.e., lasers in the one-megawatt or more range). By using multiple small waveguides in parallel, large amounts of energy can be passed through a laser, but with better control such that the aforementioned problems can be reduced. An additional advantage is that the polarization of the light can be maintained better than by using a single fiber core.
Owner:LOCKHEED MARTIN CORP

Optical Fiber Illumination Systems and Methods

An illumination system generating light having at least one wavelength within 200 nm a plurality of nano-sized structures (e.g., voids). The optical fiber coupled to the light source. The light diffusing optical fiber has a core and a cladding. The plurality of nano-sized structures is situated either within said core or at a core-cladding boundary. The optical fiber also includes an outer surface. The optical fiber is configured to scatter guided light via the nano-sized structures away from the core and through the outer surface, to form a light-source fiber portion having a length that emits substantially uniform radiation over its length, said fiber having a scattering-induced attenuation greater than 50 dB / km for the wavelength(s) within 200 nm to 2000 nm range.
Owner:CORNING INC

Optical devices with engineered nonlinear nanocomposite materials

The invention relates to an optical device. The optical device comprises a waveguide core and a nanocomposite material optically coupled to the waveguide core. The nanocomposite material includes a plurality of quantum dots. The nanocomposite material has a nonlinear index of refraction γ that is at least 10−9 cm2 / W when irradiated with an activation light having a wavelength λ between approximately 3×10−5 cm and 2×10−4 cm.
Owner:SAMSUNG ELECTRONICS CO LTD

Optical fiber with irregularities at cladding boundary

An optical fiber (10) made with a central core (12), a first cladding layer (16), and a second cladding layer (18) having a series of perturbations or irregularities formed into the otherwise generally circular outer boundary of the first cladding layer (16). The irregularities in the first cladding layer (16) interrupt the propagation of skew rays and encourage coupling into the core (12).
Owner:FIBERCORE INC

Homogeneous fluorassay methods employing fluorescent background rejection and water-soluble rare earth metal chelates

Homogeneous assays for determining quantitatively the extent of a specific binding reaction can be carried out effectively on very dilute solutions using measurements of fluorescence if a fluorescence measurement scheme that is capable of rejecting short-lived background fluorescence is employed and if the fluorescent group being measured has the following properties: a. the group being measured must be a rare earth metal chelate complex combination; b. the chelate must be water-soluble; c. the complex combination must also be stable in extremely dilute aqueous solutions, that is, the measured chelate must have at least one ligand having a metal-to-ligand binding constant of at least about 1013M-1 or greater and it must have a fluorescent emission that is long-lived compared to the longest decay lifetime of ambient substances and have a half life of from 0.01 to 50 msec.
Owner:EG&G WALLAC

Optical fiber cable having a deformable coupling element

Disclosed is an optical fiber cable that includes optical fibers and a deformable coupling element enclosed within a buffer tube. The coupling element is formed from a deformable yet substantially incompressible material that is capable of releasably and intermittently coupling the optical fibers to the buffer tube in various orientations. The design of the coupling element layer permits coupling of the optical fibers to the buffer tube without the use of a compressive cushioning layer and yet permits localized movement the optical fibers relative to the buffer tube to account for disparate thermal expansion and to accommodate optical fiber placement.
Owner:DRAKA COMTEQ BV

Photonic band gap fiber

An optical fiber having a periodical cladding structure providing an photonic band gap structure with superior qualities. The periodical structure being one wherein high index areas are defined and wherein these are separated using a number of methods. One such method is the introduction of additional low index elements, another method is providing elongated elements deformed in relation to a circular cross section. Also described is a cladding structure comprising elongated elements of a material having an index of refraction higher than that of the material adjacent thereto. Using this additional material, prior art structures may obtain much better qualities.
Owner:CRYSTAL FIBRE AS

Amplifying Optical Fiber and Method of Manufacturing

Disclosed is an amplifying optical fiber having a central core and an optical cladding surrounding the central core. The central core is based on a silica matrix that includes nanoparticles, which are composed of a matrix material that includes doping ions of at least one rare earth element. The amplifying optical fiber can be employed, for example, in an optical amplifier and an optical laser.
Owner:DRAKA COMTEQ BV

Large-mode-area optical fibers with reduced bend distortion

In a LMA optical fiber the index of the core region is graded (i.e., as viewed in a radial cross-section) and has a grading depth of Δng, as measured from a central maximum at or near the axis to a lower level that is not greater than the central maximum and not less than the index of the cladding region. When the fiber is to be bent at a bend radius, the grading depth, the radius of the core region, and the difference between the central maximum index and the cladding region index are configured to reduce bend distortion. They may also advantageously be configured to maximize the effective mode-field area of the fundamental mode, suppress higher order modes, and reduce bend loss. In a preferred embodiment, the core region includes a centralized gain region, which in turn includes a dark region that is no more than 30% of the area of the gain region. Also described is a method of making such LMA fibers.
Owner:FURAKAWA ELECTRIC NORTH AMERICA INC

Coated optical fibers having strippable primary coatings and processes for making and using same

PCT No. PCT / US98 / 01289 Sec. 371 Date Sep. 1, 1998 Sec. 102(e) Date Sep. 1, 1998 PCT Filed Jan. 23, 1998 PCT Pub. No. WO98 / 33081 PCT Pub. Date Jul. 30, 1998The invention relates to coated optical fibers which are coated with a particular radiation-cured primary coating layer composition. The fibers which are coated comprises a glass core and a glass cladding layer. The core, for example may comprises silica doped with oxides of germanium or phosphorous and the cladding, a pure or doped silicate such as fluorosilicate. Alternatively, the fibers may comprises a polymerclad silica glass core. Examples of such claddings include organosiloxanes such as polydimethylsiloxane or a fluorinated acrylic polymer.
Owner:HEXION INC

Method for making glass fibers

The invention is an improved method for manufacturing fiberglass. In the method of the invention, quartz is replaced in whole or in part by silica containing raw materials. The use of silica containing raw materials as a replacement for quartz results in significant energy savings and a reduction in defect producing components in the glass.
Owner:JOHNS MANVILLE CORP

Process for cutting an optical fiber

InactiveUS6963687B2Enhance optical coupling performance of fiberUnprecedented accuracyGlass making apparatusCladded optical fibreFiberEngineering
A process for cutting or splitting at least one optical fiber at a predetermined angle, wherein the fiber is introduced into a holding and positioning device and is cut by a pulsed laser beam.
Owner:THE WHITAKER CORP

Microphotonic waveguide including core/cladding interface layer

ActiveUS20080253728A1Reduction in waveguide lossesGlass making apparatusNanoopticsInterface layerWaveguide
The invention provides a waveguide with a waveguide core having longitudinal sidewall surfaces, a longitudinal top surface, and a longitudinal bottom surface that is disposed on a substrate. An interface layer is disposed on at least one longitudinal sidewall surface of the waveguide core. A waveguide cladding layer is disposed on at least the waveguide core sidewall and top surfaces, over the interface layer. The waveguide of the invention can be produced by forming a waveguide undercladding layer on a substrate, and then forming a waveguide core on the undercladding layer. An interface layer is then formed on at least a longitudinal sidewall surface of the waveguide core, and an upper cladding layer is formed on a longitudinal top surface and on longitudinal sidewall surfaces of the waveguide core, over the interface layer.
Owner:MASSACHUSETTS INST OF TECH

Method of precision fabrication by light exposure and structure of tunable waveguide bragg grating

A method of fabricating a tunable waveguide Bragg grating is provided. The tunable Bragg grating is preferably formed through an ultra-violet (UV) exposure process is preferred. The tunable Bragg grating is formed in an optical substrate, and may be formed in a planar lightwave circuit (PLC). In the latter example, the PLC may include multiple waveguides within close proximity, and the methods described herein provide a way of shielding adjacent waveguides from exposure during the UV exposure process. The Bragg grating is made tunable in one example through a metallic heater layer disposed over a temperature tuned region that is in communication with the Bragg grating for tuning the operation of the Bragg grating in response to changes in a driving signal to the metallic heater.
Owner:INTEL CORP

Optical coupler, a method of its fabrication and use

An optical coupler for coupling light from at least two input fibers into one output fiber and a method of fabricating and use of an optical coupler. The coupler comprises a) an input section comprising an output end face at one end of the bundling-length of input fibers; and b) an output section comprising an output fiber comprising a confining region for confining light propagated in the input fibers and a surrounding cladding region and having an input end face; wherein the output end face of said input section is optically coupled to the input end face of the output section and at least the confining region of the output fiber is tapered down from a first cross sectional area at the input end face to a second, smaller cross sectional area over a tapering-length of the output fiber.
Owner:CRYSTAL FIBRE AS

Optical fiber for transmitting ultraviolet ray, optical fiber probe, and method of manufacturing the optical fiber probe

It is an object of the present invention to provide an optical fiber for transmitting ultraviolet ray which has an improve transmittance and is prevented from deterioration by ultraviolet ray with which it is irradiated. It is another object of the present invention to provide an optical fiber probe which can propagate vacuum ultraviolet ray and deep ultraviolet ray at a high transmittance, is deteriorated only to a limited extent when irradiated with ultraviolet ray and can be etched to have a desired shape of the sharpened section at the fiber end.The present invention provides the optical fiber for transmitting ultraviolet ray which has a core 5 of silica glass containing a given content of fluorine and a clad 6a of silica glass containing a given content of fluorine or boron, a clad 6b of a resin which transmits ultraviolet ray or a clad 6c having air holes H. The clad may be coated with a protective layer and further with a covered layer for protection. In particular, the core, clad and protective layer have a high transmittance for ultraviolet ray and resistance to ultraviolet ray with which they are irradiated, when treated with hydrogen.An optical fiber probe 1 has an optical fiber 2 provided with a sharpened section 3 at the end, which is sharpened with an etchant solution, the sharpened section 3 being coated with a light-shielding metallic film 4.
Owner:JAPAN SCI & TECH CORP

LCD displays with light redirection

A backlight apparatus for directing light toward a display panel and the resulting display device comprises a solid lightguide comprising opposite TIR surfaces, containing a desired pattern of light redirecting surface features located between the TIR surfaces and interrupting one of the TIR surfaces, the features having a refractive index differing from that of the solid material of the light guide. Such an apparatus provides a more even light distribution to the display.
Owner:SKC HAAS DISPLAY FILMS CO LTD

Chalcogenide glass for low viscosity extrusion and injection molding

The invention is directed to chalcogenide glasses suitable for use in plastics forming processes. The glasses have the general formula YZ, where Y is Ge, As, Sb or a mixture of two or more of the same; Z is S, Se, Te, or a mixture of two or more of the same; and Y and Z are present in amounts (in atomic / element percent) in the range of Y=15–70% and Z=30–85%. The chalcogenide glasses of the invention have a 10,000 poise temperature of 400° C. and are resistant to crystallization when processed at high shear rates at their 10,000 poise temperature. The glasses can be used to make, among other items, molded telecommunication elements, lenses and infrared sensing devices.
Owner:CORNING INC

Modified fibers for use in the formation of thermoplastic fiber-reinforced composite articles and process

A surface-modified fibrous material is provided for incorporation in a thermoplastic matrix to form a fiber-reinforced composite article. Good binding between the fibrous material and the thermoplastic matrix is achieved through the presence of finely roughened surfaces on the fibers of nanoparticles of an inorganic material. Such nanoparticles are provided from an alkaline aqueous size composition containing the nanoparticles dispersed therein (as described). The fibrous material may be provided in continuous or discontinuous form. In a preferred embodiment glass fibers are initially provided in continuous form followed by cutting into discontinuous lengths and drying with the retention of the nanoparticles on the surfaces of the fibers. The surface-roughened fibrous material is incorporated in a thermoplastic matrix as fibrous reinforcement with the application of heat whereby the thermoplastic matrix is rendered melt processable. In preferred embodiments injection or compression molding is utilized. Improved long-fiber thermoplastics also may be formed to advantage.
Owner:JOHNS MANVILLE CORP

Light guide with imprinted phosphor

A light guide includes a transparent sheet exhibiting total internal reflection in at least one direction and phosphor printed on the transparent sheet. The phosphor extracts light from the transparent sheet when the sheet is edge-lit and converts the light from one wavelength to another wavelength. The phosphor is pressed into the surface of the sheet after heating the surface to its softening temperature.
Owner:WORLD PROPERTIES

Wavelength selective optical couplers

A wavelength selective optical fiber coupler having various applications in the field of optical communications is disclosed. The coupler is composed of dissimilar waveguides in close proximity. A light induced, permanent index of refraction grating is recorded in the coupler waist The grating filters and transfers energy within a particular range of wavelengths from a first waveguide to a second waveguide. Transversely asymmetric gratings provide an efficient means of energy transfer. The coupler can be used to combine or multiplex a plurality of lasers operating at slightly different wavelengths into a single fiber. Other embodiments such as a dispersion compensator and gain flattening filter are disclosed.
Owner:ARROYO OPTICS
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products