Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

4378 results about "Optical coupler" patented technology

Multi-layer opto-electronic substrates with electrical and optical interconnections and methods for making

Opto-electrical systems having electrical and optical interconnections formed in thin layers are disclosed. In one set of preferred embodiments, optical signals are conveyed between layers by respective vertical optical couplers disposed on the layers. In other preferred embodiments, optical signals are conveyed by stack optical waveguide coupling means. Yet other preferred embodiments have electrical via means formed in one or more layers to covey electrical signals between two or more layers.
Owner:FUJITSU LTD

Optical coupling to IC chip

An optoelectronic circuit including: an IC chip made up of a substrate in which an optical waveguide and a mirror have been fabricated, the substrate having a first lens formed thereon, wherein the mirror is aligned with the optical waveguide and the first lens is aligned with the mirror to form an optical path connecting the first lens, the mirror, and the optical waveguide; and an optical coupler including a second lens, the optical coupler affixed to the substrate and positioned to align the second lens with the first lens so as to couple an optical signal into or out of the optical waveguide within the IC chip.
Owner:APPLIED MATERIALS INC

Display backlight with improved light coupling and mixing

A display backlight assembly providing improved optical coupling between a solid state light source and a display optical light guide. The assembly includes an optical coupler to couple the solid state light source and display optical light guide together. In addition, the optical coupler may include a light mixing element for improved mixing of the multi-colored or mono-chromatic light produced by the solid state light source.
Owner:LIGHTING SCI GROUP

Optical signal transmission apparatus

Optical transmission apparatus including light transmitting first and second optical coupler elements bonded together along a planar junction. A coating at the planar junction reflects and redirects a portion of an optical signal entering the apparatus to a surface of the optical transmission apparatus.
Owner:DUNCAN TECH

Contact image sensor using switchable bragg gratings

A contact image sensor having: an illumination; a first SBG array device; a transmission grating; a second SBG array device; a waveguiding layer having a multiplicity of waveguide cores separated by cladding material; an upper clad layer; and a platen. The sensor also including an optical device for coupling light from an illumination source into the first SBG array; and an optical coupler for coupling light out of the cores into output optical paths coupled to a detector having at least one photosensitive element.
Owner:DIGILENS

Device based on coated nanoporous structure

A nanostructured apparatus may include a mesoporous template having an array of regularly-spaced pores. One or more layers of material may conformally coat the walls to a substantially uniform thickness. Such an apparatus can be used in a variety of devices including optoelectronic devices, e.g., light emitting devices (such as LEDs, and lasers) and photovoltaic devices (such as solar cells) optical devices (luminescent, electro-optic, and magnetooptic waveguides, optical filters, optical switches, amplifies, laser diodes, multiplexers, optical couplers, and the like), sensors, chemical devices (such as catalysts) and mechanical devices (such as filters for filtering gases or liquids).
Owner:AERIS CAPITAL SUSTAINABLE IP

Optical Buffering Methods, Apparatus, and Systems for Increasing the Repetition Rate of Tunable Light Sources

In one embodiment, the invention relates to an apparatus for increasing the repetition rate in a light source. The apparatus includes a first optical coupler comprising a first arm, a second arm and a third arm; a first mirror in optical communication with the second arm of the first optical coupler; and a first optical delay line having a first end in optical communication with the third arm of the first optical coupler and a second end in optical communication with a second mirror, wherein light entering the first arm of the first optical coupler leaves the first arm of the first optical coupler either delayed by an amount (τ) or substantially undelayed.
Owner:LIGHTLAB IMAGING

Electrically switchable polymer-dispersed liquid crystal materials including switchable optical couplers and reconfigurable optical interconnects

A new photopolymerizable material allows single-step, fast recording of volume holograms with properties that can be electrically controlled. Polymer-dispersed liquid crystals (PDLCs) in accordance with the invention preferably comprise a homogeneous mixture of a nematic liquid crystal and a multifunctional pentaacrylate monomer in combination with photoinitiator, coinitiator and cross-linking agent. Optionally, a surfactant such as octancic acid may also be added. The PDLC material is exposed to coherent light to produce an interference pattern inside the material. Photopolymerization of the new PDLC material produces a hologram of clearly separated liquid crystal domains and cured polymer domains. Volume transmission gratings made with the new PDLC material can be electrically switched between nearly 100% diffraction efficiency and nearly 0% diffraction efficiency. By increasing the frequency of the switching voltage, switching voltages in the range of 50 Vrms can be achieved. The optional use of a surfactant allows low switching voltages at lower frequencies than without a surfactant. In an alternative embodiment, a PDLC material in accordance with the invention can be utilized to form reflection gratings, including switchable reflection gratings. In still further embodiments, a PDLC material in accordance with the invention can be used to form switchable subwavelength gratings. By further processing, static transmission, reflection, and subwavelength PDLC materials can be formed. In addition, PDLC materials in accordance with the present invention can be used to form switchable slanted transmission gratings suitable for switchable optical coupling and reconfigurable optical interconnects.
Owner:LEIDOS

Optical System and Assembly Method

An optical system which includes some or all of the following parts: a laser light source which illuminates a spatial light modulator such that optical characteristics are preserved; a stereoscopic display which has a polarization-switching light source; a stereoscopic display which includes two infrared lasers, two optical parametric oscillators, and six second harmonic generators; two light sources processed by two parts of the same spatial light modulator; a method of assembly using an alignment plate to align kinematic rollers on a holding plate; an optical support structure which includes stacked, compartmented layers; a collimated optical beam between an optical parametric oscillator and a second harmonic generator; a laser gain module with two retroreflective mirrors; an optical tap which keeps the monitored beam co-linear; an optical coupler which includes an optical fiber and a rotating diffuser; and an optical fiber that has a core with at least one flat side.
Owner:PROJECTION VENTURES INC

Method and system for beam expansion in a display device

An exit pupil extender with one input optical element and two exit optical elements disposed on different sides of the input optical element. The exit pupil extender also comprises two intermediate optical couplers, each disposed between the input optical element and one exit optical element. The couplers serve as exit pupil extending components. All optical elements and couplers are diffractive optical elements having grating lines. The grating lines of one optical element are substantially parallel to that of other optical elements, but the grating lines of the couplers are at substantially a 60-degree angle from that of the optical elements in order to optimize the exit pupil extending efficiency.
Owner:NOKIA CORP

Optical Coupler Devices, Methods of Their Production and Use

The present invention relates in general to coupling of light from one or more input waveguides to an output waveguide or output section of a waveguide having other physical dimensions and / or optical properties than the input waveguide or waveguides. The invention relates to an optical component in the form of a photonic crystal fibre for coupling light from one component / system with a given numerical aperture to another component / system with another numerical aperture. The invention further relates to methods of producing the optical component, and articles comprising the optical component, and to the use of the optical component. The invention further relates to an optical component comprising a bundle of input fibres that are tapered and fused together to form an input coupler e.g. for coupling light from several light sources into a single waveguide. The invention still further relates to the control of the spatial extension of a guided mode (e.g. a mode-field diameter) of an optical beam in an optical fibre. The invention relates to a tapered longitudinally extending optical waveguide having a relatively larger cross section that over a certain longitudinal distance is tapered down to a relatively smaller cross section wherein the spatial extent of the guided mode is substantially constant or expanding from the relatively larger to the relatively smaller waveguide cross section. The invention may e.g. be useful in applications such as fibre lasers or amplifiers, where light must be coupled efficiently from pump sources to a double clad fibre.
Owner:CRYSTAL FIBRE AS

Reflective light coupler

An illumination system has individual light emitting diodes (LEDs) that are optically coupled via reflective couplers to respective optical fibers. The respective optical fibers may then be bundled. The shape of the reflective coupler may be selected to increase the coupling efficiency between the LED and its optical fiber. The reflective coupler may be formed as an aperture through a sheet, having a first shape at the input side and a second shape, different form the first shape, at the second side. The reflective coupler may be formed as an aperture through a body, where at least a first portion of the interior surface of the aperture conforms to a two-dimensional (2-D) surface and at least a second portion of the interior surface conforms to a three-dimensional (3-D) surface.
Owner:3M INNOVATIVE PROPERTIES CO

Optical coupling device and method for bidirectional data communication over a common signal line

Optical coupling device operates over a bidirectional data link between at least first and second communicators, each communicating data along a common wire of the data link. The device includes at least first and second optical couplers, each including a photon flux source and a photon flux detector. The photon flux source of the first and second optical couplers, respectively, is commanded by the first and second communicator, respectively. The photon flux detector of the first and second optical coupler, respectively, produces a signal on the data link at the first and second communicator, respectively, in response to the photon flux source of the second and first optical coupler, respectively, from the second and first communicator, respectively. An inhibitor inhibits the photon flux source of the second and first optical coupler, respectively, in response to an activation of the photon flux source of the first and second optical coupler, respectively.
Owner:STMICROELECTRONICS SRL

Surface mount multi-channel optocoupler

An optocoupler package is disclosed. The optocoupler package includes a substrate comprising a leadframe and a molding compound, and a plurality of optocouplers, each optocoupler including (i) an optical emitter, (ii) an optical receiver, (iii) and an optically transmissive medium disposed between the optical emitter and optical receiver, where the optical emitter and the optical receiver are electrically coupled to the leadframe.
Owner:SEMICON COMPONENTS IND LLC

Augmented optical waveguide for use in an optical touch sensitive device

An optical touch-sensitive device is able to determine the locations of multiple simultaneous touch events. The optical touch-sensitive device includes multiple emitters and detectors coupled with an optical coupler assembly through a waveguide on the surface on the optical-touch sensitive device. Each emitter produces optical beams which propagate in the waveguide via total internal reflection and are received by the detectors. Touch events disturb the optical beams, and are determined based on the disturbances. The optical touch-sensitive device further includes an intermediate layer interposed between the waveguide and a display surface. The intermediate layer preserves optical beam propagation in the waveguide and is transparent to visible light. The optical touch-sensitive device may further include at least one frame zone, at least one dead zone, and / or at least one fixed graphics zone.
Owner:BEECHROCK LTD

Optical transmitter

InactiveUS20080080872A1Avoid signal attenuationDegradation of the quality of a transmission signal can be suppressedPhase-modulated carrier systemsTransmission monitoringAmplitude controlOptical coupler
A signal Data1 and Data2 are output from a DQPSK signal source. The output signal is input to the modulator drivers 1 and 2 of the differential output. A drive signal is applied from the drivers 1 and 2 to a modulator, and modulated light is output. An optical coupler 20 branches modulator output, and a power monitor 21 detects the power of the branched light. A detection result is transmitted to an amplitude control unit 22. The amplitude control unit 22 adjusts the amplitude of the drivers 1 and 2 such that the detection result of the power monitor 21 can be the maximum.
Owner:FUJITSU LTD

Optical coupler comprising multimode fibers and method of making the same

An optical coupler is provided. It has a bundle of multimode fibers with a few-mode fiber in its centre. Such bundle is fused at one end which is the output end for the signal that is transmitted by the few-mode fiber. To make the coupler, this output end of the bundle is aligned and spliced with a large area core double clad fiber while preserving the modal content of the feed-through. A method for making such optical coupler is also provided. It includes the steps of bundling a central few-mode fiber with a plurality of multimode fibers and then fusing one end of such bundle and aligning it and splicing with a large core double clad fiber, while preserving fundamental mode transmission from one to the other.
Owner:ITF TECH +1

Optical coupler, a method of its fabrication and use

An optical coupler for coupling light from at least two input fibers into one output fiber and a method of fabricating and use of an optical coupler. The coupler comprises a) an input section comprising an output end face at one end of the bundling-length of input fibers; and b) an output section comprising an output fiber comprising a confining region for confining light propagated in the input fibers and a surrounding cladding region and having an input end face; wherein the output end face of said input section is optically coupled to the input end face of the output section and at least the confining region of the output fiber is tapered down from a first cross sectional area at the input end face to a second, smaller cross sectional area over a tapering-length of the output fiber.
Owner:CRYSTAL FIBRE AS

Wavelength selective optical routers

Using the wavelength selectivity and low loss characteristics of optical couplers, in which index of refraction gratings in a non-evanescent waveguide merged region reflect only a selected wavelength band, signal switching and control systems of novel characteristics are provided for multi-wavelength optical communication systems. In a router, for example, selected wavelengths or wavelength bands on an add / drop line can be added to or dropped from a main fiber, by cross switching between wavelength selective loops disposed sequentially in the lines. In a collector box, as another example, selected wavelength bundles can be routed from one fiber onto multiple fibers. In a bandpass filter a selected wavelength band is transmitted with low loss while those wavelengths outside the selected wavelength band are rejected with very high loss.
Owner:ARROYO OPTICS

Method and apparatus for bandwidth-efficient multicast in ethernet passive optical networks

InactiveUS20050100036A1Facilitates bandwidth-efficient multicastMultiplex system selection arrangementsTime-division multiplexBroadcastingOptical coupler
One embodiment of the present invention provides a system that facilitates bandwidth-efficient multicast in EPONs. The system includes a central node and at least one remote node. Downstream data from the central node is broadcast through a passive optical coupler to remote nodes. In the other direction, upstream data from a remote node is transmitted through the passive optical coupler to the central node in a unicast manner. During operation, the system first selects a common multicast LLID to represent a number of remote nodes that comprise a multicast group. Upon receiving a multicast message destined to the multicast group, the system sends the multicast message along with the multicast LLID for the multicast group, whereby the multicast message is broadcast through the passive optical coupler in the downstream direction. This allows each remote node belonging to the multicast group to receive the multicast message by matching the multicast LLID.
Owner:AVAGO TECH INT SALES PTE LTD

High efficacy waveguide coupler

An optical coupling apparatus for coupling a waveguide to a light source, when the light source emits light at a divergence angle that is larger than the critical angle of the waveguide. The optical coupler comprises a plurality of light-guides, preferably cut from the edge of the waveguide. The light-guides are arranged to connect the waveguide to the light source via a plurality of orientations so that the entire divergence angle is covered within the critical angle of the light-guides.
Owner:OREE ADVANCED ILLUMINATION SOLUTIONS LTD +1

Optical fiber amplifier and dispersion compensating fiber module for optical fiber amplifier

The invention provides an optical fiber amplifier which assures stable operation of a pump light source and efficiently makes use of residual pump power to achieve improvement in conversion efficiency. The optical fiber amplifier includes a rare earth doped fiber. Pump light from a pump light source is introduced into one end of the rare earth doped fiber by way of a first optical coupler, and residual pump light originating from the pump light and arriving at the other end of the rare earth doped fiber is applied to the other rare earth doped fiber amplifier or the loss compensation of a dispersion compensating fiber by Raman amplification.
Owner:FUJITSU LTD

Wavelength selective optical couplers

A wavelength selective optical fiber coupler having various applications in the field of optical communications is disclosed. The coupler is composed of dissimilar waveguides in close proximity. A light induced, permanent index of refraction grating is recorded in the coupler waist The grating filters and transfers energy within a particular range of wavelengths from a first waveguide to a second waveguide. Transversely asymmetric gratings provide an efficient means of energy transfer. The coupler can be used to combine or multiplex a plurality of lasers operating at slightly different wavelengths into a single fiber. Other embodiments such as a dispersion compensator and gain flattening filter are disclosed.
Owner:ARROYO OPTICS

Optical coupler for an endoscope

An optical coupler is disclosed with an attachment section for mounting at a distal end of an optical imaging device for visualizing a surface area covered with an opaque fluid and / or particulate matter. The coupler includes a visualization section at one end of the coupler that includes a proximal surface for engaging the distal end of the optical imaging device, an attachment section connected to and extending away from the visualization section, an outer surface spaced apart from the proximal surface, and may include a hollow instrument channel extending from the proximal surface toward the outer surface. This surface extends continuously from a first outer side boundary across to a second opposite outer side boundary of the visualization section. The visualization section can be formed from an elastic material capable of transmitting an optical image of the surface area. In one form, the material is a silicone gel or elastomer.
Owner:THE GENERAL HOSPITAL CORP

IGBT drive protection circuit

The invention discloses an IGBT drive protection circuit, which comprises positive and negative power supplies, a signal and feedback optical coupler, a signal amplification circuit, an undervoltage detection and indication circuit, an IGBT overcurrent detection and reset circuit, a soft turn-off circuit, a fault latch and retaining circuit and the like. The undervoltage detection circuit if the power supply at the receiving terminal of the signal optical coupler and the positive / negative power supply are undervoltage, and an LED is lighted if the power supply at the receiving terminal of thesignal optical coupler and the positive / negative power supply are not undervoltage to enable a drive circuit. The IGBT overcurrent detection circuit can sample a collector-emitter voltage drop duringthe period when the IGBT is turned on, detect time delay according to high-low dynamic adjustment of the collector-emitter voltage drop, start a soft turn-off process and perform self locking to ensure soft turn off when the collector-emitter voltage drop exceeds a preset threshold, retain the overcurrent fault state, keep the IGBT turned off during the retaining period, transmit the state to a control circuit and keep time set between millisecond and second.
Owner:SHENZHEN CLOU DRIVE TECH CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products