Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

4345 results about "Optical coupler" patented technology

Electrically switchable polymer-dispersed liquid crystal materials including switchable optical couplers and reconfigurable optical interconnects

A new photopolymerizable material allows single-step, fast recording of volume holograms with properties that can be electrically controlled. Polymer-dispersed liquid crystals (PDLCs) in accordance with the invention preferably comprise a homogeneous mixture of a nematic liquid crystal and a multifunctional pentaacrylate monomer in combination with photoinitiator, coinitiator and cross-linking agent. Optionally, a surfactant such as octancic acid may also be added. The PDLC material is exposed to coherent light to produce an interference pattern inside the material. Photopolymerization of the new PDLC material produces a hologram of clearly separated liquid crystal domains and cured polymer domains. Volume transmission gratings made with the new PDLC material can be electrically switched between nearly 100% diffraction efficiency and nearly 0% diffraction efficiency. By increasing the frequency of the switching voltage, switching voltages in the range of 50 Vrms can be achieved. The optional use of a surfactant allows low switching voltages at lower frequencies than without a surfactant. In an alternative embodiment, a PDLC material in accordance with the invention can be utilized to form reflection gratings, including switchable reflection gratings. In still further embodiments, a PDLC material in accordance with the invention can be used to form switchable subwavelength gratings. By further processing, static transmission, reflection, and subwavelength PDLC materials can be formed. In addition, PDLC materials in accordance with the present invention can be used to form switchable slanted transmission gratings suitable for switchable optical coupling and reconfigurable optical interconnects.
Owner:LEIDOS

Optical Coupler Devices, Methods of Their Production and Use

The present invention relates in general to coupling of light from one or more input waveguides to an output waveguide or output section of a waveguide having other physical dimensions and/or optical properties than the input waveguide or waveguides. The invention relates to an optical component in the form of a photonic crystal fibre for coupling light from one component/system with a given numerical aperture to another component/system with another numerical aperture. The invention further relates to methods of producing the optical component, and articles comprising the optical component, and to the use of the optical component. The invention further relates to an optical component comprising a bundle of input fibres that are tapered and fused together to form an input coupler e.g. for coupling light from several light sources into a single waveguide. The invention still further relates to the control of the spatial extension of a guided mode (e.g. a mode-field diameter) of an optical beam in an optical fibre. The invention relates to a tapered longitudinally extending optical waveguide having a relatively larger cross section that over a certain longitudinal distance is tapered down to a relatively smaller cross section wherein the spatial extent of the guided mode is substantially constant or expanding from the relatively larger to the relatively smaller waveguide cross section. The invention may e.g. be useful in applications such as fibre lasers or amplifiers, where light must be coupled efficiently from pump sources to a double clad fibre.
Owner:CRYSTAL FIBRE AS
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products