Patents
Literature
Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

3090results about "Diffraction gratings" patented technology

Method and apparatus for drug product tracking using encoded optical identification elements

A method and apparatus for drug product tracking (or other pharmaceutical, health care or cosmetics products, and/or the packages or containers they are supplied with) using diffraction grating-based encoded optical identification elements 8 includes an optical substrate 10 having at least one diffraction grating 12 disposed therein. The grating 12 has one or more colocated pitches Λ which represent a unique identification digital code that is detected when illuminated by incident light 24. The incident light 24 may be directed transversely from the side of the substrate 10 (or from an end) with a narrow band (single wavelength) or multiple wavelength source, and the code is represented by a spatial distribution of light or a wavelength spectrum, respectively, or a combination thereof. The encoded element 8 may be used to label any desired item, such as drugs or medicines, or other pharmaceutical or health care products or cosmetics. The label may be used for many different purposes, such as for sorting, tracking, identification, verification, authentication, anti-theft/anti-counterfeit, security/anti-terrorism, or for other purposes. In a manufacturing environment, the elements 8 may be used to track inventory for production information or sales of goods/products. Such labeling provides product identification at the pill or liquid medicine level, which provides traceability of these products to their manufacturer, thereby reducing counterfeit products in the marketplace. Also, the elements 8 may be incorporated into a film, liquid, coating or adhesive tape at attached to the product package.
Owner:ILLUMINA INC

Device for concentrating optical radiation

A holographic planar concentrator (HPC) for collecting and concentrating optical radiation is provided. The holographic planar concentrator comprises a planar highly transparent plate and at least one multiplexed holographic optical film mounted on a surface thereof. The multiplexed holographic optical film has recorded therein a plurality of diffractive structures having one or more regions which are angularly and spectrally multiplexed. Two or more of the regions may be configured to provide spatial multiplexing. The HPC is fabricated by: (a) recording the plurality of diffractive structures in the multiplexed holographic optical film employing angular, spectral, and, optionally, spatial multiplexing techniques; and (b) mounting the multiplexed holographic optical film on one surface of the highly transparent plate. The recording of the plurality of diffractive structures is tailored to the intended orientation of the holographic planar concentrator to solar energy. The HPC is mounted in the intended orientation for collecting solar energy and at least one solar energy-collecting device is mounted along at least one edge of the holographic planar concentrator. Examples of suitable solar energy-collecting devices include photovoltaic cells and fiber optic light guides for transmitting collected light into an interior of a building for illumination purposes and for transmitting collected solar radiation into a hot water tank for heating. The HPC permits efficient collection of solar energy without expensive requirements, while minimizing energy losses.
Owner:ILLINOIS INSTITUTE OF TECHNOLOGY

Apparatus for obtaining information for a structure using spectrally-encoded endoscopy teachniques and methods for producing one or more optical arrangements

Exemplary apparatus for obtaining information for a structure can be provided. For example, the exemplary apparatus can include at least one first optical fiber arrangement which is configured to transceive at least one first electromagnetic radiation, and can include at least one fiber. The exemplary apparatus can also include at least one second focusing arrangement in optical communication with the optical fiber arrangement. The second arrangement can be configured to focus and provide there through the first electromagnetic radiation. Further, the exemplary apparatus can include at least one third dispersive arrangement which is configured to receive a particular radiation which is the first electromagnetic radiation and/or the focused electromagnetic radiation, and forward a dispersed radiation thereof to at least one section of the structure. At least one end of the fiber can be directly connected to the second focusing arrangement and/or the third dispersive arrangement. In addition, an exemplary embodiment of a method for producing an optical arrangement can be provided. For example, a first set of optical elements having a first size in a first configuration and a second set of optical elements in cooperation with the second set and having a second size in a second configuration can be provided. The first and second sets can be clamped into a third set of optical elements. The third set can be polished, and a further set of optical elements may be deposited on the polished set.
Owner:THE GENERAL HOSPITAL CORP

Method and apparatus for using an array of grating light valves to produce multicolor optical images

A multicolor optical image-generating device comprised of an array of grating light valves (GLVs) organized to form light-modulating pixel units for spatially modulating incident rays of light. The pixel units are comprised of three subpixel components each including a plurality of elongated, equally spaced apart reflective grating elements arranged parallel to each other with their light-reflective surfaces also parallel to each other. Each subpixel component includes means for supporting the grating elements in relation to one another, and means for moving alternate elements relative to the other elements and between a first configuration wherein the component acts to reflect incident rays of light as a plane mirror, and a second configuration wherein the component diffracts the incident rays of light as they are reflected from the grating elements. The three subpixel components of each pixel unit are designed such that when red, green and blue light sources are trained on the array, colored light diffracted by particular subpixel components operating in the second configuration will be directed through a viewing aperture, and light simply reflected from particular subpixel components operating in the first configuration will not be directed through the viewing aperture.
Owner:THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products