Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

123 results about "Extended depth of focus" patented technology

Optical method and system for extended depth of focus

An imaging arrangement and method for extended the depth of focus are provided. The imaging arrangement comprises an imaging lens having a certain affective aperture, and an optical element associated with said imaging lens. The optical element is configured as a phase-affecting, non-diffractive optical element defining a spatially low frequency phase transition. The optical element and the imaging lens define a predetermined pattern formed by spaced-apart substantially optically transparent features of different optical properties. Position of at least one phase transition region of the optical element within the imaging lens plane is determined by at least a dimension of said affective aperture.
Owner:BRIEN HOLDEN VISION INST (AU)

Apparatus and method for reducing imaging errors in imaging systems having an extended depth of field

An improved opto-electronic imaging system which is adapted for use with incoherently illuminated objects, and which produces final images having a reduced imaging error content. The imaging system includes an optical assembly for forming an intermediate image of the object to be imaged, an image sensor for receiving the intermediate image and producing an intermediate image signal, and processing means for processing the intermediate image signal to produce a final image signal having a reduced imaging error content. A reduction in imaging error content is achieved, in part, by including in the optical assembly a phase mask for causing the OTF of the optical assembly to be relatively invariant over a range of working distances, and an amplitude mask having a transmittance that decreases continuously as a function of distance from the center thereof. The reduction in imaging error content is also achieved, in part, by including in the processing means an improved generalized recovery function that varies in accordance with at least the non-ideal calculated IOTF of the optical assembly under a condition of approximately optimum focus.
Owner:HAND HELD PRODS

Optical method and system for extended depth of focus

An imaging arrangement and method for extended the depth of focus are provided. The imaging arrangement comprises an imaging lens having a certain affective aperture, and an optical element associated with said imaging lens. The optical element is configured as a phase-affecting, non-diffractive optical element defining a spatially low frequency phase transition. The optical element and the imaging lens define a predetermined pattern formed by spaced-apart substantially optically transparent features of different optical properties. Position of at least one phase transition region of the optical element within the imaging lens plane is determined by at least a dimension of said affective aperture.
Owner:BRIEN HOLDEN VISION INST (AU)

Imaging system and method for providing extended depth of focus, range extraction and super resolved imaging

An imaging system is presented for imaging objects within a field of view of the system. The imaging system comprises an imaging lens arrangement, a light detector unit at a certain distance from the imaging lens arrangement, and a control unit connectable to the output of the detection unit. The imaging lens arrangement comprises an imaging lens and an optical element located in the vicinity of the lens aperture, said optical element introducing aperture coding by an array of regions differently affecting a phase of light incident thereon which are randomly distributed within the lens aperture, thereby generating an axially-dependent randomized phase distribution in the Optical Transfer Function (OTF) of the imaging system resulting in an extended depth of focus of the imaging system. The control unit is configured to decode the sampled output of the detection unit by using the random aperture coding to thereby extract 3D information of the objects in the field of view of the light detector unit.
Owner:BRIEN HOLDEN VISION INST (AU)

Intraocular lens having extended depth of focus

An ophthalmic lens for providing enhanced or extended depth of focus includes an optic having an aperture disposed about an optical axis. The optic includes a first surface having a first shape and an opposing second surface having a second shape, the first and second surfaces providing, a base power and, in some embodiments an add power. The optic further includes an extended focus mask disposed upon at least one of the first shape and the second shape that is configured to provide the enhanced or extended depth of focus for one or more foci of the optic, as compared to a similar optic not having the extended focus mask.
Owner:AMO REGIONAL HLDG

Optical method and system for extended depth of focus

An imaging arrangement and method for extended the depth of focus are provided. The imaging arrangement comprises an imaging lens having a certain affective aperture, and an optical element associated with said imaging lens. The optical element is configured as a phase-affecting, non-diffractive optical element defining a spatially low frequency phase transition. The optical element and the imaging lens define a predetermined pattern formed by spaced-apart substantially optically transparent features of different optical properties. Position of at least one phase transition region of the optical element within the imaging lens plane is determined by at least a dimension of said affective aperture.
Owner:BRIEN HOLDEN VISION INST (AU)

Extended depth of field using a multi-focal length lens with a controlled range of spherical aberration and a centrally obscured aperture

An extended depth of field is achieved by a computational imaging system that combines a multifocal imaging subsystem for producing a purposefully blurred intermediate image with a digital processing subsystem for producing a recovered image having an extended depth of field. The multifocal imaging system preferably exhibits spherical aberration as the dominant feature of the purposeful blur. A central obscuration of the multifocal imaging subsystem renders point-spread functions of object points more uniform over a range of object distances. An iterative digital deconvolution algorithm for converting the intermediate image into the recovered image contains a metric parameter that speeds convergence, avoids stagnations, and enhances image quality.
Owner:SEMICON COMPONENTS IND LLC

Optical method and system for extended depth of focus

An imaging arrangement and method for extended the depth of focus are provided. The imaging arrangement comprises an imaging lens having a certain affective aperture, and an optical element associated with said imaging lens. The optical element is configured as a phase-affecting, non-diffractive optical element defining a spatially low frequency phase transition. The optical element and the imaging lens define a predetermined pattern formed by spaced-apart substantially optically transparent features of different optical properties. Position of at least one phase transition region of the optical element within the imaging lens plane is determined by at least a dimension of said affective aperture.
Owner:BRIEN HOLDEN VISION INST (AU)

All Optical System and Method for Providing Extended Depth of Focus of Imaging

An imaging system and method are presented. The system comprises an imaging lens unit, an imaging detector, and a birefringent element located between the imaging lens unit and the imaging detector. The system is thus configure and operable to provide in-focus imaging of objects located at both near-field and far-field ranges. Also provided is an optical device configured to be mounted on an imaging lens, being one of the following: a lens of an individual's glasses, on a contact lens, and an eye internal lens. The optical device is configured to be located between the imaging lens and the retina and comprises a birefringent element, to thereby provide in-focus imaging onto the retina of the objects located at both near-field and far-field ranges therefrom.
Owner:BRIEN HOLDEN VISION INST (AU)

Large depth-of-field imaging system and iris recogniton system

(A2) An extended depth of field (DOF) imaging system (10) is disclosed that has a corresponding extended depth of focus (DOF′) by virtue of its optical system (20) having a select amount of spherical aberration. The imaging system has an image processing unit (54) adapted to process the raw images and perform contrast enhancement to form processed images. The image processing includes restoring the defocused modulation transfer functions (MTFs) using a gain function (G) and the amount of defocus. The imaging system can include an illumination system (60) that illuminates the object being imaged to establish a distance (DH) between the optical system and the object, where distance DH is used in the restoring of the MTF. An iris-recognition (I-R) system based on the enhanced DOF imaging system is also disclosed.; Optical system embodiments for use in the DOF imaging system that can provide select amounts of spherical aberration—and thus select increases in DOF—without increasing the adverse impact of other aberrations on image formation are also disclosed.
Owner:GLOBAL BIONIC OPTICS PTY LTD

Toric lens with decreased sensitivity to cylinder power and rotation and method of using the same

A method, system and apparatus for vision correction are disclosed. The method, system and apparatus include a toric intraocular element for correcting astigmatism and having a cylinder power, and a depth of focus extender coupled to the toric intraocular element, the depth of focus extender extending a depth of focus. The extended depth of focus may reduce sensitivity of the toric intraocular element to at least one of rotation and selected cylinder power.
Owner:AMO GRONINGEN

Intraocular lens with extended depth of focus

An ophthalmic lens is disclosed, one embodiment comprising an optic having an anterior surface and a posterior surface disposed about an optical axis, wherein at least one of the surfaces has a profile characterized by superposition of a base profile and an auxiliary profile, the auxiliary profile comprising a continuous pattern of surface deviations from the base profile. The auxiliary profile is a sinusoidal profile and can be amplitude modulated, frequency modulated or both amplitude and frequency modulated. The ophthalmic lens can be an IOL.
Owner:NOVARTIS AG

Multi-ring lens, systems and methods for extended depth of focus

ActiveUS20140168602A1Increase depth of focusSuppress the distinct bifocalitySpectales/gogglesEye diagnosticsImaging qualityEye lens
Systems and methods for providing enhanced image quality across a wide and extended range of foci encompass vision treatment techniques and ophthalmic lenses such as contact lenses and intraocular lenses (IOLs). Exemplary IOL optics can include an aspheric refractive profile imposed on a first or second lens surface, and a diffractive profile imposed on a first or second lens surface. The aspheric refractive profile can focus light toward a far focus. The diffractive profile can include a central zone that distributes a first percentage of light toward a far focus and a second percentage of light toward an intermediate focus. The diffractive profile can also include a peripheral zone, surrounding the central zone, which distributes a third percentage of light toward the far focus and a fourth percentage of light toward the intermediate focus.
Owner:AMO GRONINGEN

Systems and methods for constructing an image having an extended depth of field

Systems and methods are provided for constructing a composite image having an extended depth of focus from a plurality of spatially congruent source images of lesser depth of focus. The systems and methods are relatively fast, preserve detail, provide robust results on a variety of unpredictable workpiece features and configurations, and tend to suppress or reduce out-of-focus artifacts. The composite image is constructed by edge and / or boundary analysis to identify well-focused edges or boundaries in the source images. Each particular edge or boundary in the composite image is determined based on the source image containing the best-focused instance of each particular edge or boundary. The composite image is constructed outside of the previously constructed portions by surface analysis to identify well-focused surfaces in the source images, Each particular surface portion in the composite image is determined based on the source image with the best-focused instance of each particular surface portion.
Owner:MITUTOYO CORP

Achromatic imaging lens with extended depth of focus

A lens includes a diffractive surface having an etched structure and a refractive surface having a curved structure. The lens reduces chromatic aberration of incident light and extends depth of focus. In one alternative, the etched structure is a calculated phase pattern or a pattern that is embossed or diamond tuned. In another alternative, the curved structure is convex shaped or concave shaped. In yet another alternative, the lens is an imaging lens wherein high lateral resolution of incident light is preserved.
Owner:NEW SPAN OPTO TECH

Extended depth of focus for high-resolution optical image scanning

Methods and systems for acquiring and / or projecting images from and / or to a target area are provided. Such a method or system can includes an optical fiber assembly which may be driven to scan the target area in a scan pattern. The optical fiber assembly may provide multiple effective light sources (e.g., via a plurality of optical fibers) that are axially staggered with respect to an optical system located between the optical fiber and the target area. The optical system may be operable to focus and / or redirect the light from the multiple light sources onto separate focal planes. A composite image may be generated based on light reflected from and / or projected onto the separate focal planes. The composite image may have an extended depth of focus or field spanning over a distance between the separate focal planes while maintaining or improving image resolution.
Owner:UNIV OF WASHINGTON CENT FOR COMMERICIALIZATION

Intraocular lens with shape changing capability to provide enhanced accomodation and visual acuity

InactiveUS20130297018A1Improve accommodation effectIntraocular lensShape changeVisual acuity
An intraocular lens for providing a range of accommodative vision, an extended depth of focus, or enhanced performance through the asymmetric transfer of ocular forces to the lens. The intraocular lens contains an optic and a haptic. The shape and / or material of the haptic results in the transmission of ocular forces to particular regions in the optic. Greater forces applied to particular regions result in deformation of that region and increased power.
Owner:JOHNSON & JOHNSON SURGICAL VISION INC

Feature Dependent Extended Depth of Focusing on Semi-Transparent Biological Specimens

A method and system for constructing a digital image of a three-dimensional biological specimen that displays diagnostically important information—substantially to the exclusion of unimportant information. The system de-enhances features in a cellular specimen which are not diagnostically important and enhances those which are The system selects the sharpest pixel for each pixel location from among a stack of image slices and copies them into a composite image
Owner:CDX MEDICAL IP INC

Lenses, systems and methods for providing custom aberration treatments and monovision to correct presbyopia

A lens, system and / or method for providing custom ocular aberrations for enhanced higher visual acuity. Scaled versions of a patient's aberration pattern may either attenuate or amplify the overall amount of ocular aberrations, to either correct or partially correct a patient's aberrations leading to enhanced visual acuity and / or extended depth of focus. This may be binocularly applied in order to provide high visual acuity in a patient at least at near, far and intermediate distances. The method may include obtaining an optimized binocular summation of both eyes of the patient; designing a first lens solution to correct or partially correct the dominant eye's aberrations according to an attenuated scaled version of a patient's ocular aberrations in the dominant eye; and designing a second lens solution to provide an additional customized extension of depth of focus by the induction of scaled patterns of ocular aberrations in the non dominant eye.
Owner:AMO GRONINGEN

Lens having extended depth of focus, method for designing the same, and optical system having the same

ActiveUS20090279189A1Simplify point spread functionSimple designMountingsExposure controlOptical axisPoint spread function
The lens includes a plurality of lens layers, each lens layer being axi-symmetric and having an extended depth of focus to focus light in a corresponding section of a focal curve in the form of a straight line located on an optical axis. In the optical system, light is focused on an optical axis to obtain a clear image in a wide distance range between a camera and an object. The optical system has a point spread function that is simpler and more symmetric. That is, the optical system provides improved continuity of a lens surface and easiness and flexibility in optical designing.
Owner:SAMSUNG ELECTRONICS CO LTD

Optical Method and System for Extended Depth of Focus

An imaging arrangement and method for extended the depth of focus are provided. The imaging arrangement comprises an imaging lens having a certain affective aperture, and an optical element associated with said imaging lens. The optical element is configured as a phase-affecting, non-diffractive optical element defining a spatially low frequency phase transition. The optical element and the imaging lens define a predetermined pattern formed by spaced-apart substantially optically transparent features of different optical properties. Position of at least one phase transition region of the optical element within the imaging lens plane is determined by at least a dimension of said affective aperture.
Owner:BRIEN HOLDEN VISION INST (AU)

Optical imaging system with extended depth of focus

The invention concerns an optical imaging apparatus comprising (o) a light source (1), (p) sample holding means, (q) an interferometer, (r) reference means, (s) an objective (8) which is adapted to have its sample side focal plane crossing a sample held in said sample holding means, (t) optical or electro-optical means (2, 3, 5, 16) adapted to produce a ring shaped or multi-spot light source in the front focal plane (17) or any conjugated plane (17′) of said objective (8), at least one detector. The invention also includes a method for using said apparatus where the sample is illuminated by an interference pattern and the depth information is obtained by using optical Coherence Tomography.
Owner:ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (EPFL)

Lens providing extended depth of focus and method relating to same

Ophthalmic lenses providing an extended depth of focus include anterior and posterior faces, wherein at least part of the anterior or posterior face has a curvature based upon the summation of a cubic and / or pentic phase profile, and methods relating to same. The ophthalmic lens may be a contact lens, an intraocular lens (IOL), or other corrective lens.
Owner:AMO GRONINGEN

Toric lens with decreased sensitivity to cylinder power and rotation and method of using the same

A method, system and apparatus for vision correction are disclosed. The method, system and apparatus include a toric intraocular element for correcting astigmatism and having a cylinder power, and a depth of focus extender coupled to the toric intraocular element, the depth of focus extender extending a depth of focus. The extended depth of focus may reduce sensitivity of the toric intraocular element to at least one of rotation and selected cylinder power.
Owner:AMO GRONINGEN

All optical system and method for providing extended depth of focus of imaging

An imaging system and method are presented. The system comprises an imaging lens unit, an imaging detector, and a birefringent element located between the imaging lens unit and the imaging detector. The system is thus configure and operable to provide in-focus imaging of objects located at both near-field and far-field ranges. Also provided is an optical device configured to be mounted on an imaging lens, being one of the following: a lens of an individual's glasses, on a contact lens, and an eye internal lens. The optical device is configured to be located between the imaging lens and the retina and comprises a birefringent element, to thereby provide in-focus imaging onto the retina of the objects located at both near-field and far-field ranges therefrom.
Owner:BRIEN HOLDEN VISION INST (AU)

Engineered Point Spread Function for Simultaneous Extended Depth of Field and 3D Ranging

Optical systems utilize waveplates to simultaneously encode information for increasing image depth of field and for providing a depth map of the imaged object or sample. These waveplates are configured to result in a focus-invariant point spread function in one focal region, and to result in point spread functions that vary as a function of range within the imaged object in a different focal region. For example, a basic compound microscope might have a specially shaped waveplate inserted at the back aperture plane of the microscope objective to manipulate the phase of the wavefront. An image formed on one side of the plane of best focus is focus invariant, and is brought into focus by a restoring algorithm. An image formed on the other side of the plane of best focus captures point spread functions comprising rings that vary with depth within the imaged object.
Owner:UNIV OF COLORADO THE REGENTS OF
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products