Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

444 results about "Lateral resolution" patented technology

Axial resolution, also known as longitudinal, depth or linear resolution resolution is resolution in the direction parallel to the ultrasound beam. The resolution at any point along the beam is the same; therefore axial resolution is not affected by depth of imaging.

Method and apparatus to produce ultrasonic images using multiple apertures

A combination of an ultrasonic scanner and an omnidirectional receive transducer for producing a two-dimensional image from the echoes received by the single omnidirectional transducer is described. Two-dimensional images with different noise components can be constructed from the echoes received by additional transducers. These can be combined to produce images with better signal to noise ratios and lateral resolution. Also disclosed is a method based on information content to compensate for the different delays for different paths through intervening tissue is described. Specular reflections are attenuated by using even a single omnidirectional receiver displaced from the insonifying probe. The disclosed techniques have broad application in medical imaging but are ideally suited to multi-aperture cardiac imaging using two or more intercostal spaces. Since lateral resolution is determined primarily by the aperture defined by the end elements, it is not necessary to fill the entire aperture with equally spaced elements. In fact, gaps can be left to accommodate spanning a patient's ribs, or simply to reduce the cost of the large aperture array. Multiple slices using these methods can be combined to form three-dimensional images.
Owner:MAUI IMAGING

Method and apparatus to produce ultrasonic images using multiple apertures

A combination of an ultrasonic scanner and an omnidirectional receive transducer for producing a two-dimensional image from the echoes received by the single omnidirectional transducer is described. Two-dimensional images with different noise components can be constructed from the echoes received by additional transducers. These can be combined to produce images with better signal to noise ratios and lateral resolution. Also disclosed is a method based on information content to compensate for the different delays for different paths through intervening tissue is described. Specular reflections are attenuated by using even a single omnidirectional receiver displaced from the insonifying probe. The disclosed techniques have broad application in medical imaging but are ideally suited to multi-aperture cardiac imaging using two or more intercostal spaces. Since lateral resolution is determined primarily by the aperture defined by the end elements, it is not necessary to fill the entire aperture with equally spaced elements. In fact, gaps can be left to accommodate spanning a patient's ribs, or simply to reduce the cost of the large aperture array. Multiple slices using these methods can be combined to form three-dimensional images.
Owner:MAUI IMAGING

Method and device for observing photoacoustic imaging in single-array element and multi-angle mode based on compressive sensing

The invention relates to a method and device for observing photoacoustic imaging in a single-array element and multi-angle mode based on compressive sensing, belonging to the technical field of photoacoustic imaging and aiming at solving the problems of serious artefact, deformed images, high hardware cost and poor lateral resolution of images in the existing photoacoustic technology for imaging biological tissues. The method comprises the following steps: leading a pulsed laser to emit pulsed laser beams, irradiating the pulsed laser beams upon the biological tissues by using an optical maskto generate photoacoustic signals, observing and acquiring the photoacoustic signals synchronously by using two angled single array element ultrasonic probes, amplifying the photoacoustic signals, sending the photoacoustic signals to an A / D (analog to digital) converter, sampling uniformly, inputting acquired photoacoustic image data into a computer by using an FPGA (field programmable gate array), and reconstructing and fusing photoacoustic images by using the computer. Due to the adoption of a hardware platform and a processing mechanism which is rapidly constructed based on the compressivesensing algorithm by using the single array element ultrasonic probes to acquire the photoacoustic signals in parallel, the high resolution of the images are ensured on the premise that the sampled data are reduced and the acquiring time is shortened. The device for imaging is easy to operate.
Owner:HARBIN INST OF TECH

Underground water detection device and detection method based on combination of nuclear magnetic resonance and transient electromagnetic method

The invention relates to underground water detection device and detection method based on the combination of nuclear magnetic resonance and transient electromagnetic method. The underground water detection device is formed by connecting a computer with a transient electromagnetic emission bridge circuit and a nuclear magnetic resonance emission bridge circuit through a high-power power supply with an adjustable output voltage, connecting the nuclear magnetic resonance emission bridge circuit with an emission coil through a harmonic capacitor, connecting the computer with the nuclear magnetic resonance emission bridge circuit and the transient electromagnetic emission bridge circuit through an emission control unit respectively, and connecting the emission control unit with the nuclear magnetic resonance emission bridge circuit and the transient electromagnetic emission bridge circuit respectively. The underground water detection device has the prominent advantages that the limit of a test site is avoided by using a hollow coil, thus increasing the transverse resolution of nuclear magnetic resonance detection. The underground water detection device can be much conveniently applied in underground engineering for narrow spaces such as tunnels and mine excavation roadways, the dimensions of a reception device are greatly reduced, and the spatial constraint is lower, thus the underground water detection device can be used for much accurately detecting a water-containing body; the problems of time consumption, cost consumption and labour consumption during pavement for a large coil are solved, the working efficiency is increased, and the working cost is reduced.
Owner:JILIN UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products