Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

400results about How to "High imaging" patented technology

Method for Detecting Desired Objects in a Highly Dynamic Environment by a Monitoring System

ActiveUS20070273765A1Accurate shadeAccurate color informationImage analysisCharacter and pattern recognitionMonitoring systemBackground image
At least one image of the environment is taken using either an image capturing device of the monitoring system. Based on the image of the environment, at least one background image is generated. The background image, which comprises a plurality of pixels, is divided into pixel blocks. In each pixel block, at least one data cluster is formed using at least one feature of the pixels in the pixel block. The data cluster formed in each pixel block is described as a data distribution having a mean value and a standard deviation from the mean value. After generating the background image, a subsequent image is taken by the monitoring system. Each pixel of the subsequent image is compared with the data cluster of the block of the background image correspond to the pixel, and a first discrepancy value is generated accordingly. The pixel of the subsequent image is further compared with the data distribution of at least another pixel block which is adjacent to the pixel block of the background image corresponding to the pixel, and a second discrepancy value is generated as a result of this comparison. Based on the first and second discrepancy value, the pixel of the subsequent image is determined to be either a background pixel or a foreground pixel. After all the pixels in the subsequent image have been determined as either a background or a foreground pixel, a binary map is generated. The connected foreground pixels in the binary map are marked to form a foreground object, which is the detected objected in the environment according to the invention.
Owner:AGENCY FOR SCI TECH & RES

Integrated bi-directional dual axial gradient refractive index/diffraction grating wavelength division multiplexer

A wavelength division multiplexer/demultiplexer is provided that integrates axial gradient refractive index elements with a diffraction grating to provide efficient coupling from a plurality of input optical sources (each delivering a single wavelength to the device) which are multiplexed to a single polychromatic beam for output to a single output optical source. The device comprises: (a) means for accepting an optical input from at least one optical source, the means including a planar surface; (b) a first coupler element comprising (1) a first axial gradient refractive index collimating lens having a planar entrance surface onto which the optical input is incident and (2) a first homogeneous index boot lens affixed to the first collimating lens and having a planar exit surface from which optical light exits; (c) a diffraction grating formed on the planar exit surface which combines a plurality of angularly separated diffracted wavelengths from the optical light; (d) a reflecting element for reflecting the plurality of diffracted wavelengths; (e) a second coupler element comprising (1) a second homogeneous index boot lens having a planar entrance surface onto which said plurality of diffracted wavelengths is incident and (2) a second axial gradient refractive index collimating lens affixed to the second homogeneous index boot lens; and (f) means for outputting at least one multiplexed, polychromatic output beam to an optical receiver, the means including a planar back surface. The device may be operated in either the forward or the reverse direction.
Owner:AUXORA

Displacement sensor

A displacement sensor comprising an imaging unit and an image processing unit. The imaging unit comprises a two dimensional imaging device and a drive control unit. The two dimensional imaging device includes a group of light receiving pixels arranged in a matrix so as to correspond to a field of view of a standard imaging unit, a plurality of vertical shift registers corresponding to different columns of the pixels, and a horizontal register for receiving the outputs of the vertical shift registers from top stages thereof, a photosensitive pixel region being defined in a prescribed horizontal band having a sufficiently narrower width than that would be provided by the total number of horizontal lines and interposed between a front optically black pixel region and a back optically black pixel region. The drive control unit controls, according to a commanded electric charge transfer protocol, a feeding of signal electric charges from each light receiving pixel to the vertical shift register of a corresponding column, a vertical transfer of signal electric charges in the vertical shift register of each column, and a horizontal transfer of signal electric charges in the horizontal shift register. The image processing unit comprises electric charge transfer protocol command means for giving an electric charge transfer protocol to the drive control unit of the imaging unit in dependence of a content of the image process.
Owner:ORMON CORPORATION
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products