Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

6707 results about "Sonification" patented technology

Sonification is the use of non-speech audio to convey information or perceptualize data. Auditory perception has advantages in temporal, spatial, amplitude, and frequency resolution that open possibilities as an alternative or complement to visualization techniques.

Apparatus and method for non-invasive and minimally-invasive sensing of venous oxygen saturation and pH levels

Medical diagnostic apparatus and methods are disclosed. Ultrasound radiation pressure selectively modulates a target area within a body. One or more pulses of radiation containing temporally correlated groups of photons are generated. The photons are characterized by two or more different wavelengths that are selected to have specific interaction with a target chromophore. The two or more different wavelengths are also selected to have substantially similar scattering cross-sections and anisotropy parameters in the target and its surroundings. The pulses of radiation are injected into the body proximate the target area being modulated by the radiation pressure field. Photon groups at each of the different wavelengths that are backscattered from the target area are detected in temporal coincidence. Time-gated background-free amplification of the return signal is used to exclude photons which could not by virtue of their arrival time have interacted with the radiation-pressure-modulated target. Photon groups are selected with a modulation component at the modulation frequency of the radiation pressure modulation field, or at a harmonic of the modulation frequency. From the arrival rate of the detected temporally correlated photon pairs or multiplets, chemical information about the target area, such as an oxygenation or pH level can be inferred. Cardiac output may be computed from measurements of venous and / or arterial oxygenation using this technique.

Systems and methods for characterization of materials and combinatorial libraries with mechanical oscillators

Methods and apparatus for screening diverse arrays of materials are provided. In one aspect, systems and methods are provided for imaging a library of materials using ultrasonic imaging techniques. The system includes one or more devices for exciting an element of the library such that acoustic waves are propagated through, and from, the element. The acoustic waves propagated from the element are detected and processed to yield a visual image of the library element. The acoustic wave data can also be processed to obtain information about the elastic properties of the library element. In another aspect, systems and methods are provided for generating acoustic waves in a tank filled with a coupling liquid. The library of materials is then placed in the tank and the surface of the coupling liquid is scanned with a laser beam. The structure of the liquid surface disturbed by the acoustic wave is recorded, the recorded disturbance being representative of the physical structure of the library. In another aspect of the invention, a mechanical resonator is used to evaluate various properties (e.g., molecular weight, viscosity, specific weight, elasticity, dielectric constant, conductivity, etc.) of the individual liquid elements of a library of materials. The resonator is designed to ineffectively excite acoustic waves. The frequency response of the resonator is measured for the liquid element under test, preferably as a function of time. By calibrating the resonator to a set of standard liquids with known properties, the properties of the unknown liquid can be determined. An array of library elements can be characterized by a single scanning transducer or by using an array of transducers corresponding to the array of library elements. Alternatively, multiple resonators of differing design may be used to evaluate each element of a library of elements, thus providing improved dynamic range and sensitivity.

Systems and methods for collaborative interactive visualization of 3D data sets over a network ("DextroNet")

Exemplary systems and methods are provided by which multiple persons in remote physical locations can collaboratively interactively visualize a 3D data set substantially simultaneously. In exemplary embodiments of the present invention, there can be, for example, a main workstation and one or more remote workstations connected via a data network. A given main workstation can be, for example, an augmented reality surgical navigation system, or a 3D visualization system, and each workstation can have the same 3D data set loaded. Additionally, a given workstation can combine real-time imagining with previously obtained 3D data, such as, for example, real-time or pre-recorded video, or information such as that provided by a managed 3D ultrasound visualization system. A user at a remote workstation can perform a given diagnostic or therapeutic procedure, such as, for example, surgical navigation or fluoroscopy, or can receive instruction from another user at a main workstation where the commonly stored 3D data set is used to illustrate the lecture. A user at a main workstation can, for example, see the virtual tools used by each remote user as well as their motions, and each remote user can, for example, see the virtual tool of the main user and its respective effects on the data set at the remote workstation. For example, the remote workstation can display the main workstation's virtual tool operating on the 3D data set at the remote workstation via a virtual control panel of said local machine in the same manner as if said virtual tool was a probe associated with that remote workstation. In exemplary embodiments of the present invention each user's virtual tools can be represented by their IP address, a distinct color, and / or other differentiating designation. In exemplary embodiments of the present invention the data network can be either low or high bandwidth. In low bandwidth embodiments a 3D data set can be pre-loaded onto each user's workstation and only the motions of a main user's virtual tool and manipulations of the data set sent over the network. In high bandwidth embodiments, for example, real-time images, such as, for example, video, ultrasound or fluoroscopic images, can be also sent over the network as well.

Implantable medical device for monitoring cardiac blood pressure and chamber dimension

InactiveUS20050027323A1Maximize cardiac outputConvenient timeCatheterHeart stimulatorsSonificationHeart chamber
Implantable medical devices (IMDs) for monitoring signs of acute or chronic cardiac heart failure by measuring cardiac blood pressure and mechanical dimensions of the heart and providing multi-chamber pacing optimized as a function of measured blood pressure and dimensions are disclosed. The dimension sensor or sensors comprise at least a first sonomicrometer piezoelectric crystal mounted to a first lead body implanted into or in relation to one heart chamber that operates as an ultrasound transmitter when a drive signal is applied to it and at least one second sonomicrometer crystal mounted to a second lead body implanted into or in relation to a second heart chamber that operates as an ultrasound receiver. The ultrasound receiver converts impinging ultrasound energy transmitted from the ultrasound transmitter through blood and heart tissue into an electrical signal. The time delay between the generation of the transmitted ultrasound signal and the reception of the ultrasound wave varies as a function of distance between the ultrasound transmitter and receiver which in turn varies with contraction and expansion of a heart chamber between the first and second sonomicrometer crystals. One or more additional sonomicrometer piezoelectric crystal can be mounted to additional lead bodies such that the distances between the three or more sonomicrometer crystals can be determined. In each case, the sonomicrometer crystals are distributed about a heart chamber such that the distance between the separated ultrasound transmitter and receiver crystal pairs changes with contraction and relaxation of the heart chamber walls.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products