Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2054 results about "Ultrasound imaging" patented technology

Ultrasound imaging (sonography) uses high-frequency sound waves to view inside the body. Because ultrasound images are captured in real-time, they can also show movement of the body's internal organs as well as blood flowing through the blood vessels. Unlike X-ray imaging, there is no ionizing radiation exposure associated with ultrasound imaging.

Ultrasound methods of positioning guided vascular access devices in the venous system

The invention relates to the guidance, positioning and placement confirmation of intravascular devices, such as catheters, stylets, guidewires and other flexible elongate bodies that are typically inserted percutaneously into the venous or arterial vasculature. Currently these goals are achieved using x-ray imaging and in some cases ultrasound imaging. This invention provides a method to substantially reduce the need for imaging related to placing an intravascular catheter or other device. Reduced imaging needs also reduce the amount of radiation that patients are subjected to, reduce the time required for the procedure, and decrease the cost of the procedure by reducing the time needed in the radiology department. An aspect of the invention includes, for example, an endovenous access and guidance system. The system comprises: an elongate flexible member adapted and configured to access the venous vasculature of a patient; a sensor disposed at a distal end of the elongate flexible member and configured to provide in vivo non-image based ultrasound information of the venous vasculature of the patient; a processor configured to receive and process in vivo non-image based ultrasound information of the venous vasculature of the patient provided by the sensor and to provide position information regarding the position of the distal end of the elongate flexible member within the venous vasculature of the patient; and an output device adapted to output the position information from the processor.
Owner:TELEFLEX LIFE SCI LTD

Endovenous access and guidance system utilizing non-image based ultrasound

The invention relates to the guidance, positioning and placement confirmation of intravascular devices, such as catheters, stylets, guidewires and other flexible elongate bodies that are typically inserted percutaneously into the venous or arterial vasculature. Currently these goals are achieved using x-ray imaging and in some cases ultrasound imaging. This invention provides a method to substantially reduce the need for imaging related to placing an intravascular catheter or other device. Reduced imaging needs also reduce the amount of radiation that patients are subjected to, reduce the time required for the procedure, and decrease the cost of the procedure by reducing the time needed in the radiology department. An aspect of the invention includes, for example, an endovenous access and guidance system. The system comprises: an elongate flexible member adapted and configured to access the venous vasculature of a patient; a sensor disposed at a distal end of the elongate flexible member and configured to provide in vivo non-image based ultrasound information of the venous vasculature of the patient; a processor configured to receive and process in vivo non-image based ultrasound information of the venous vasculature of the patient provided by the sensor and to provide position information regarding the position of the distal end of the elongate flexible member within the venous vasculature of the patient; and an output device adapted to output the position information from the processor.
Owner:TELEFLEX LIFE SCI LTD

Electrosurgical generator

This invention relates to high-frequency ablation of tissue in the body using a cooled high-frequency electrode connected to a high frequency generator including a computer graphic control system and an automatic controller for control the signal output from the generator, and adapted to display on a real time graphic display a measured parameter related to the ablation process and visually monitor the variation of the parameter of the signal output that is controlled by the controller during the ablation process. In one example, one or more measured parameters are displayed simultaneously to visually interpret the relation of their variation and values. In one example, the displayed one or more parameters can be taken from the list of measured voltage, current, power, impedance, electrode temperature, and tissue temperature related to the ablation process. The graphic display gives the clinician an instantaneous and intuitive feeling for the dynamics and stability of the ablation process for safety and control. This invention relates to monitoring and controlling multiple ground pads to optimally carry return currents during high-frequency tissue ablation, and to prevent of ground-pad skin burns. This invention relates to the use of ultrasound imaging intraoperatively during a tissue ablation procedure. This invention relates to the use of nerve stimulation and blocking during a tissue ablation procedure.
Owner:COSMAN INTRUMENTS LLC

High-resolution, three-dimensional whole body ultrasound imaging system

This invention incorporates the techniques of geophysical technology into medical imaging. Ultrasound waves are generated from multiple, simultaneous sources tuned for maximum penetration, resolution, and image quality. Digitally recorded reflections from throughout the body are combined into a file available for automated interpretation and wavelet attribute analyses. Unique points within the object are imaged from multiple positions for signal-to-noise enhancement and wavelet velocity determinations. This system describes gaining critical efficiencies by reducing equation variables to known quantities. Sources and receivers are locked in invariant, known positions. Statistically valid measurements of densities and wavelet velocities are combined with object models and initial parameter assumptions. This makes possible three-dimensional images for viewing manipulation, mathematical analyses, and detailed interpretation, even of the body in motion. The invention imposes a Cartesian coordinate system on the image of the object. This makes reference to any structure within the object repeatable and precise. Finally, the invention teaches how the recording and storing of the received signals from a whole body analysis makes a subsequent search for structures and details within the object possible without reexamining the object.
Owner:HOLMBERG LINDA JEAN

Method and system for enhancing safety with medical peripheral device by monitoring if host computer is AC powered

A method and system for enhancing computer peripheral safety is provided. In accordance with various aspects of the present invention, the exemplary method and system are configured to monitor and / or isolate alternating current (A.C.) supplies with and / or from any peripheral subsystems or devices. An exemplary method and system comprises an A.C. supply, a host computer system, and a peripheral subsystem or device connected to the host computer system, such as an ultrasound imaging and / or therapy peripheral, and an isolation subsystem configured for monitoring and / or isolating the A.C. supply from the peripheral subsystem or device. In accordance with an exemplary embodiment, an isolation subsystem comprises application software and associated modules and functions that when executed continuously monitors and / or polls the host computer's hardware and / or operating system for the presence of an isolated source, such as a battery, or an unisolated power source, such as through a battery charger and / or other connection path to the A.C. main supply. In accordance with other exemplary embodiments, an isolation subsystem can comprises a wireless or other safe / isolated electrical link for connecting a patient contact device, and / or a verification link or other verification mechanisms configured between an isolation transformer and host computer to monitor or observe usage to power the host computer and peripheral subsystem.
Owner:GUIDED THERAPY SYSTEMS LLC

Endovascular access and guidance system utilizing divergent beam ultrasound

The invention relates to the guidance, positioning and placement confirmation of intravascular devices, such as catheters, stylets, guidewires and other flexible elongate bodies that are typically inserted percutaneously into the venous or arterial vasculature. Currently these goals are achieved using x-ray imaging and in some cases ultrasound imaging. This invention provides a method to substantially reduce the need for imaging related to placing an intravascular catheter or other device. Reduced imaging needs also reduce the amount of radiation that patients are subjected to, reduce the time required for the procedure, and decrease the cost of the procedure by reducing the time needed in the radiology department. An aspect of the invention includes, for example, an endovenous access and guidance system. The system comprises: an elongate flexible member adapted and configured to access the venous vasculature of a patient; a sensor disposed at a distal end of the elongate flexible member and configured to provide in vivo non-image based ultrasound information of the venous vasculature of the patient; a processor configured to receive and process in vivo non-image based ultrasound information of the venous vasculature of the patient provided by the sensor and to provide position information regarding the position of the distal end of the elongate flexible member within the venous vasculature of the patient; and an output device adapted to output the position information from the processor.
Owner:TELEFLEX LIFE SCI LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products