Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

2118 results about "Ultrasound imaging" patented technology

Ultrasound imaging (sonography) uses high-frequency sound waves to view inside the body. Because ultrasound images are captured in real-time, they can also show movement of the body's internal organs as well as blood flowing through the blood vessels. Unlike X-ray imaging, there is no ionizing radiation exposure associated with ultrasound imaging.

Ultrasound methods of positioning guided vascular access devices in the venous system

The invention relates to the guidance, positioning and placement confirmation of intravascular devices, such as catheters, stylets, guidewires and other flexible elongate bodies that are typically inserted percutaneously into the venous or arterial vasculature. Currently these goals are achieved using x-ray imaging and in some cases ultrasound imaging. This invention provides a method to substantially reduce the need for imaging related to placing an intravascular catheter or other device. Reduced imaging needs also reduce the amount of radiation that patients are subjected to, reduce the time required for the procedure, and decrease the cost of the procedure by reducing the time needed in the radiology department. An aspect of the invention includes, for example, an endovenous access and guidance system. The system comprises: an elongate flexible member adapted and configured to access the venous vasculature of a patient; a sensor disposed at a distal end of the elongate flexible member and configured to provide in vivo non-image based ultrasound information of the venous vasculature of the patient; a processor configured to receive and process in vivo non-image based ultrasound information of the venous vasculature of the patient provided by the sensor and to provide position information regarding the position of the distal end of the elongate flexible member within the venous vasculature of the patient; and an output device adapted to output the position information from the processor.
Owner:TELEFLEX LIFE SCI LTD

System and method of capturing and managing information during a medical diagnostic imaging procedure

A system and method of capturing and managing the medical information obtained during an imaging procedure is provided. The system includes a sonogram imaging device operated by a technician, and a technician computer system in communication with the imaging device via a communications network. A computer server communicates with the technician computer system, and includes a medical diagnostic imaging software program. A healthcare provider computer system is operatively in communication with the computer server via the communications network. The method includes the steps of conducting the imaging procedure and building a study from the generated image and captured impression of the real-time observations of the generated image and measurement data by the technician. The study is stored in the database associated with a computer server and is accessible by a healthcare professional using a healthcare provider computer system for preparing a medical diagnosis.
Owner:MILLER LANDON C G

Hybrid imaging method to monitor medical device delivery and patient support for use in the method

This invention discloses a method and apparatus to deliver medical devices to targeted locations within human tissues using imaging data. The method enables the target location to be obtained from one imaging system, followed by the use of a second imaging system to verify the final position of the device. In particular, the invention discloses a method based on the initial identification of tissue targets using MR imaging, followed by the use of ultrasound imaging to verify and monitor accurate needle positioning. The invention can be used for acquiring biopsy samples to determine the grade and stage of cancer in various tissues including the brain, breast, abdomen, spine, liver, and kidney. The method is also useful for delivery of markers to a specific site to facilitate surgical removal of diseased tissue, or for the targeted delivery of applicators that destroy diseased tissues in-situ.
Owner:INVIVO CORP

Methods and systems for ultrasound imaging of the heart from the pericardium

A peritoneal ultrasound imager includes an elongated body less than about 20 inches in length that is adapted to be inserted through a cannula into or near the pericardium space, and an ultrasound transducer array at one end of the body that is suitable for ultrasound echocardiography. The cannula and ultrasound imager may be of a single piece construction. A method for imaging the heart includes introducing a cannula into the wall of a patient's chest, inserting the elongated body into the cannula, moving the inserted elongated body to a position near the heart, and imaging the heart with ultrasound echo.
Owner:EP MEDSYST

Endovenous access and guidance system utilizing non-image based ultrasound

The invention relates to the guidance, positioning and placement confirmation of intravascular devices, such as catheters, stylets, guidewires and other flexible elongate bodies that are typically inserted percutaneously into the venous or arterial vasculature. Currently these goals are achieved using x-ray imaging and in some cases ultrasound imaging. This invention provides a method to substantially reduce the need for imaging related to placing an intravascular catheter or other device. Reduced imaging needs also reduce the amount of radiation that patients are subjected to, reduce the time required for the procedure, and decrease the cost of the procedure by reducing the time needed in the radiology department. An aspect of the invention includes, for example, an endovenous access and guidance system. The system comprises: an elongate flexible member adapted and configured to access the venous vasculature of a patient; a sensor disposed at a distal end of the elongate flexible member and configured to provide in vivo non-image based ultrasound information of the venous vasculature of the patient; a processor configured to receive and process in vivo non-image based ultrasound information of the venous vasculature of the patient provided by the sensor and to provide position information regarding the position of the distal end of the elongate flexible member within the venous vasculature of the patient; and an output device adapted to output the position information from the processor.
Owner:TELEFLEX LIFE SCI LTD

Apparatus and method to limit the life span of a diagnostic medical ultrasound probe

An ultrasound probe for diagnostic medical ultrasound imaging, including an ultrasound transducer and a circuit having a plurality of states to limit the use of the ultrasound probe. Ultrasound probe use can be limited based on a unique identification number (e.g., selected by means of electrically programmable fuses) assigned to each ultrasound probe. Alternatively, the ultrasound system software monitors and updates the number of times that the ultrasound probe has been used. Another aspect of the invention is directed to an ultrasound system, including an ultrasound probe with multiple states, a circuit to program and to receive state data from the ultrasound probe and interpret the state data, and a cable to communicate state data between the ultrasound probe and the processor. Another aspect of the invention is directed to a method for using a limited use ultrasound probe, including the steps of determining the state of a circuit in the limited use ultrasound probe and determining if the ultrasound probe can be used.
Owner:SIEMENS MEDICAL SOLUTIONS USA INC

Method and system to synchronize acoustic therapy with ultrasound imaging

Interference in ultrasound imaging when used in connection with high intensity focused ultrasound (HIFU) is avoided by employing a synchronization signal to control the HIFU signal. Unless the timing of the HIFU transducer is controlled, its output will substantially overwhelm the signal produced by ultrasound imaging system and obscure the image it produces. The synchronization signal employed to control the HIFU transducer is obtained without requiring modification of the ultrasound imaging system. Signals corresponding to scattered ultrasound imaging waves are collected using either the HIFU transducer or a dedicated receiver. A synchronization processor manipulates the scattered ultrasound imaging signals to achieve the synchronization signal, which is then used to control the HIFU bursts so as to substantially reduce or eliminate HIFU interference in the ultrasound image. The synchronization processor can alternatively be implemented using a computing device or an application-specific circuit.
Owner:UNIV OF WASHINGTON

Integrated ultrasound imaging and ablation probe

A system for imaging and providing therapy to one or more regions of interest is presented. The system includes an imaging and therapy catheter configured to image an anatomical region to facilitate assessing need for therapy in one or more regions within the anatomical region and delivering therapy to the one or more regions of interest within the anatomical region. In addition, the system includes a medical imaging system operationally coupled to the catheter and having a display area and a user interface area, wherein the medical imaging system is configured to facilitate defining a therapy pathway to facilitate delivering therapy to the one or more regions of interest.
Owner:GENERAL ELECTRIC CO

Electrosurgical generator

This invention relates to high-frequency ablation of tissue in the body using a cooled high-frequency electrode connected to a high frequency generator including a computer graphic control system and an automatic controller for control the signal output from the generator, and adapted to display on a real time graphic display a measured parameter related to the ablation process and visually monitor the variation of the parameter of the signal output that is controlled by the controller during the ablation process. In one example, one or more measured parameters are displayed simultaneously to visually interpret the relation of their variation and values. In one example, the displayed one or more parameters can be taken from the list of measured voltage, current, power, impedance, electrode temperature, and tissue temperature related to the ablation process. The graphic display gives the clinician an instantaneous and intuitive feeling for the dynamics and stability of the ablation process for safety and control. This invention relates to monitoring and controlling multiple ground pads to optimally carry return currents during high-frequency tissue ablation, and to prevent of ground-pad skin burns. This invention relates to the use of ultrasound imaging intraoperatively during a tissue ablation procedure. This invention relates to the use of nerve stimulation and blocking during a tissue ablation procedure.
Owner:COSMAN INTRUMENTS LLC

High-resolution, three-dimensional whole body ultrasound imaging system

This invention incorporates the techniques of geophysical technology into medical imaging. Ultrasound waves are generated from multiple, simultaneous sources tuned for maximum penetration, resolution, and image quality. Digitally recorded reflections from throughout the body are combined into a file available for automated interpretation and wavelet attribute analyses. Unique points within the object are imaged from multiple positions for signal-to-noise enhancement and wavelet velocity determinations. This system describes gaining critical efficiencies by reducing equation variables to known quantities. Sources and receivers are locked in invariant, known positions. Statistically valid measurements of densities and wavelet velocities are combined with object models and initial parameter assumptions. This makes possible three-dimensional images for viewing manipulation, mathematical analyses, and detailed interpretation, even of the body in motion. The invention imposes a Cartesian coordinate system on the image of the object. This makes reference to any structure within the object repeatable and precise. Finally, the invention teaches how the recording and storing of the received signals from a whole body analysis makes a subsequent search for structures and details within the object possible without reexamining the object.
Owner:HOLMBERG LINDA JEAN

Method and system for enhancing safety with medical peripheral device by monitoring if host computer is AC powered

A method and system for enhancing computer peripheral safety is provided. In accordance with various aspects of the present invention, the exemplary method and system are configured to monitor and / or isolate alternating current (A.C.) supplies with and / or from any peripheral subsystems or devices. An exemplary method and system comprises an A.C. supply, a host computer system, and a peripheral subsystem or device connected to the host computer system, such as an ultrasound imaging and / or therapy peripheral, and an isolation subsystem configured for monitoring and / or isolating the A.C. supply from the peripheral subsystem or device. In accordance with an exemplary embodiment, an isolation subsystem comprises application software and associated modules and functions that when executed continuously monitors and / or polls the host computer's hardware and / or operating system for the presence of an isolated source, such as a battery, or an unisolated power source, such as through a battery charger and / or other connection path to the A.C. main supply. In accordance with other exemplary embodiments, an isolation subsystem can comprises a wireless or other safe / isolated electrical link for connecting a patient contact device, and / or a verification link or other verification mechanisms configured between an isolation transformer and host computer to monitor or observe usage to power the host computer and peripheral subsystem.
Owner:GUIDED THERAPY SYSTEMS LLC

Endovascular access and guidance system utilizing divergent beam ultrasound

The invention relates to the guidance, positioning and placement confirmation of intravascular devices, such as catheters, stylets, guidewires and other flexible elongate bodies that are typically inserted percutaneously into the venous or arterial vasculature. Currently these goals are achieved using x-ray imaging and in some cases ultrasound imaging. This invention provides a method to substantially reduce the need for imaging related to placing an intravascular catheter or other device. Reduced imaging needs also reduce the amount of radiation that patients are subjected to, reduce the time required for the procedure, and decrease the cost of the procedure by reducing the time needed in the radiology department. An aspect of the invention includes, for example, an endovenous access and guidance system. The system comprises: an elongate flexible member adapted and configured to access the venous vasculature of a patient; a sensor disposed at a distal end of the elongate flexible member and configured to provide in vivo non-image based ultrasound information of the venous vasculature of the patient; a processor configured to receive and process in vivo non-image based ultrasound information of the venous vasculature of the patient provided by the sensor and to provide position information regarding the position of the distal end of the elongate flexible member within the venous vasculature of the patient; and an output device adapted to output the position information from the processor.
Owner:TELEFLEX LIFE SCI LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products