Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

6148results about "Material analysis using sonic/ultrasonic/infrasonic waves" patented technology

Methods for producing ultrasonic waveguides having improved amplification

Methods for manufacturing ultrasonic waveguides having improved velocity gain are disclosed. Additionally, methods for manufacturing ultrasonic medical devices including the ultrasonic waveguides are disclosed. Specifically, the ultrasonic waveguides comprises a first material having a higher acoustic impedance and a second material having a lower acoustic impedance.
Owner:KIMBERLY-CLARK WORLDWIDE INC

cMUT devices and fabrication methods

Fabrication methods for capacitive-micromachined ultrasound transducers (“cMUT”) and cMUT imaging array systems are provided. cMUT devices fabricated from low process temperatures are also provided. In an exemplary embodiment, a process temperature can be less than approximately 300 degrees Celsius. A cMUT fabrication method generally comprises depositing and patterning materials on a substrate (400). The substrate (400) can be silicon, transparent, other materials. In an exemplary embodiment, multiple metal layers (405, 410, 415) can be deposited and patterned onto the substrate (400); several membrane layers (420, 435, 445) can be deposited over the multiple metal layers (405, 410, 415); and additional metal layers (425, 430) can be disposed within the several membrane layers (420, 435, 445). The second metal layer (410) is preferably resistant to etchants used to etch the third metal layer (415) when forming a cavity (447). Other embodiments are also claimed and described.
Owner:GEORGIA TECH RES CORP

Multiple element electrode cMUT devices and fabrication methods

Multiple electrode element capacitive micromachined ultrasonic transducer (“cMUT”) devices and fabrication methods are provided. A cMUT device generally comprises a top electrode disposed within a membrane, a bottom electrode disposed on a substrate, and a cavity between the membrane and the bottom electrode. In a preferred embodiment of the present invention, at least one of the first electrode and the second electrode comprises a plurality of electrode elements. The electrode elements can be positioned and energized to shape the membrane and efficiently transmit and receive ultrasonic energy, such as ultrasonic waves. Other embodiments are also claimed and described.
Owner:GEORGIA TECH RES CORP

Gas main robotic inspection system

The present invention provides a long-range, untethered, live, in-pipe inspection system that includes a self-propelled train having a plurality of modules; joint members for interconnecting adjacent modules, data collection components, and wireless communication components for transmitting collected data and receiving control messages. The module-train includes, generally, at least one, and preferably two drive modules, at least one power module and an electronics module. The train may additionally include at least one support module, which may be interposed between the power and electronics modules. In one embodiment of the invention, there are two drive modules, one at each terminal end of the train, two power modules, one adjacent to each drive module, two support modules, one adjacent to each power module, and one central electronics and computing module.
Owner:CARNEGIE MELLON UNIV

Method and apparatus for vibration sensing and analysis

A method and apparatus for sensing and measuring stress waves. The method comprises the steps of: a.) sensing motion, where the motion comprises a stress wave component and a vibration component; b.) separating the stress wave component from the vibration component with a high pass filter to create a signal proportional to the stress wave; c.) amplifying the signal to create an amplified signal; d.) processing the amplified signal with a sample and hold peak detector over a predetermined interval of time to determine peaks of the amplified signal over said predetermined period of time; e.) creating an output signal proportional to the determined peaks of the amplified signal; and, f.) repeating steps d.) and e.). The invention also includes an apparatus for implementing the method of the invention.
Owner:PCB PIEZOTRONICS IMI SENSORS +1

Imaging ultrasound transducer temperature control system and method using feedback

A system and method for controlling the heat of an ultrasonic transducer is disclosed. In the presently preferred embodiments, the system and method controls the temperature of the transducer by changing operating system parameters based on feedback from temperature sensing elements placed in the transducer. The chosen mutable system parameters may be preset by the construction of the ultrasonic system, under the control of the ultrasonic system user, or a combination of the two. In several exemplary embodiments, the one or more mutable system parameters are altered by an amount proportionate to the difference between the current temperature and a preferred operating temperature. In another exemplary embodiment, the system switches to a lower power imaging mode when the temperature feedback indicates a threshold temperature has been reached.
Owner:KONINKLIJKE PHILIPS ELECTRONICS NV

Enhanced acoustic detection of gas leaks in underground gas pipelines

A method for locating gas leaks from underground gas pipelines in which a first acoustic sensor having a first signal output is positioned in ground disposed substantially above or at a distance from the underground gas pipeline. At least one second acoustic sensor having a second signal output is positioned in the ground at a plurality of locations substantially above the underground gas pipeline. The output signals from the acoustic sensors are measured for each location of the second acoustic sensor and the signals are adaptively filtered to remove common noise signal components. The statistical minima of these rms voltages are determined for both the first output signal and the adaptively filtered second output signals and the differences determined. The location of the second acoustic sensor corresponding to the largest positive said difference is the location closest to the leak site.
Owner:GAS TECH INST

Ultrasound catheter calibration system

Apparatus is provided for calibrating a probe having a position sensor and an ultrasonic transducer. The apparatus includes a test fixture, which includes an ultrasonic target disposed therein at a known position. A computer is adapted to receive a position signal generated by the position sensor while the transducer is in alignment with the ultrasonic target, determine an orientation of the probe in a frame of reference of the test fixture, and determine calibration data for the probe responsive to the orientation of the probe.
Owner:BIOSENSE

Ophthalmic ultrasound probe assembly

An ultrasonic probe assembly comprises a housing defining a longitudinal axis and having a linear motor assembly, a swivel base, and an extension arm disposed therewithin. An imaging transducer is mounted on a free end of the extension arm and is specifically adapted to be moved along an arcuate path as a result of mechanical interconnection of the swivel base to the linear motor assembly. The swivel base upon which the extension arm is mounted is configured to be pivotable about a pivot axis oriented transversely relative to the longitudinal axis such that reciprocative motion of the linear motor assembly is converted in swiveling motion of the swivel base and oscillating translation of the transducer along an arcuate path such that the transducer axis is oriented generally perpendicularly relative to an anatomical structure having a convexly shaped outer surface.
Owner:CAPISTRANO LABS

Method and system for non-invasive determination of blood-related parameters

A method and system for measuring time variations of a response of a blood perfused fleshy medium to an external electromagnetic field is provided. The response of the medium to the external electromagnetic field can be a photo-acoustic signal, obtained in response to the exciting light, and / or impedance of the medium, in response to the applied ac electromagnetic field. Measurements of the time variations of the response of the medium are carried out when the condition of artificial kinetics is created and maintained over a certain time period by applying primary over-systolic pressure to a certain location at the medium with normal blood flow, so as to achieve a state of temporary blood flow cessation at the medium downstream of the certain location. When required, the control of the condition of the artificial kinetics can be further achieved by applying a perturbation of secondary pressure to the fleshy medium.
Owner:ORSENSE LTD

Wide or multiple frequency band ultrasound transducer and transducer arrays

Ultrasound bulk wave transducers and bulk wave transducer arrays for wide band or multi frequency band operation, in which the bulk wave is radiated from a front surface and the transducer is mounted on a backing material with sufficiently high absorption that reflected waves in the backing material can be neglected. The transducer is formed of layers that include a high impedance section comprised of at least one piezoelectric layer covered with electrodes to form an electric port, and at least one additional elastic layer, with all of the layers of the high impedance section having substantially the same characteristic impedance to yield negligible reflection between the layers. The transducer further includes a load matching section comprised of a set of elastic layers for impedance matching between the high impedance section and the load material and, optionally, impedance matching layers between the high impedance section and the backing material for shaping the transducer frequency response. For multiband operation, the high impedance section includes multiple piezoelectric layers covered with electrodes to form multiple electric ports that can further be combined by electric parallel, anti-parallel, serial, or anti-serial galvanic coupling to form electric ports with selected frequency transfer functions. Each electric port may be separately transceiver-connected to obtain parallel, anti-parallel, serial or anti-serial port coupling for multi-band transmission, and extremely wide-band reception.
Owner:ANGELSEN BJORN A J +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products