Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

490 results about "Electromechanical transducer" patented technology

Electromechanical transducer, any type of device that either converts an electrical signal into sound waves (as in a loudspeaker) or converts a sound wave into an electrical signal (as in the microphone). Many of the transducers used in everyday life operate in both directions, such as the speakerphone on certain intercoms.

Ultrasonic medical device and associated method

A medical system includes a carrier and a multiplicity of electromechanical transducers mounted to the carrier, the transducers being disposable in effective pressure-wave-transmitting contact with a patient. Energization componentry is operatively connected to a first plurality of the transducers for supplying the same with electrical signals of at least one pre-established ultrasonic frequency to produce first pressure waves in the patient. A control unit is operatively connected to the energization componentry and includes an electronic analyzer operatively connected to a second plurality of the transducers for performing electronic 3D volumetric data acquisition and imaging (which includes determining three-dimensional shapes) of internal tissue structures of the patient by analyzing signals generated by the second plurality of the transducers in response to second pressure waves produced at the internal tissue structures in response to the first pressure waves. The control unit includes phased-array signal processing circuitry for effectuating an electronic scanning of the internal tissue structures which facilitates one-dimensional (vector), 2D (planar), and 3D (volume) data acquisition. The control unit further includes circuitry for defining multiple data gathering apertures and for coherently combining structural data from the respective apertures to increase spatial resolution. When the data gathering apertures are contained in a flexible web or carrier so that the instantaneous positions of the data gathering apertures are unknown, a self-cohering algorithm is used to determine their positions so that coherent aperture combining can be performed.
Owner:WILK ULTRASOUND OF CANADA

Ultrasonic medical device and associated method

A medical system includes a carrier and a multiplicity of electromechanical transducers mounted to the carrier, the transducers being disposable in effective pressure-wave-transmitting contact with a patient. Energization componentry is operatively connected to a first plurality of the transducers for supplying the same with electrical signals of at least one pre-established ultrasonic frequency to produce first pressure waves in the patient. A control unit is operatively connected to the energization componentry and includes an electronic analyzer operatively connected to a second plurality of the transducers for performing electronic 3D volumetric data acquisition and imaging (which includes determining three-dimensional shapes) of internal tissue structures of the patient by analyzing signals generated by the second plurality of the transducers in response to second pressure waves produced at the internal tissue structures in response to the first pressure waves. The control unit includes phased-array signal processing circuitry for effectuating an electronic scanning of the internal tissue structures which facilitates one-dimensional (vector), 2D (planar), and 3D (volume) data acquisition. The control unit further includes circuitry for defining multiple data gathering apertures and for coherently combining structural data from the respective apertures to increase spatial resolution. When the data gathering apertures are contained in a flexible web or carrier so that the instantaneous positions of the data gathering apertures are unknown, a self-cohering algorithm is used to determine their positions so that coherent aperture combining can be performed.
Owner:WILK ULTRASOUND OF CANADA

System for optimal energy harvesting and storage from an electromechanical transducer

A device for collection of energy from mechanical disturbances and distribution of that energy to an electrical load. A transducer converts mechanical energy in the form of forces and displacements into electrical energy in the form of charge pulses. The charge pulses are rectified into a Direct Current (DC) power signal and accumulated and stored in an input storage element. A controlled conversion circuit assures that the voltage on the storage element is maintained within a predetermined optimal range for energy harvesting from the transducer, avoiding the application of peak voltages. The controlled conversion circuit can be hard wired and/or controllably adjustable to match a given disturbance characteristic. Only when the voltage is within the optimal range for a given type of disturbance will the controlled conversion circuit enable a DC/DC converter to further convert the stored energy to a voltage that is coupled to an output storage element. This technique optimizes power conversion by controlling the high voltage to low version conversion process by, for example, sensing the disturbance with external sensor or internal voltage of the system, and then using this information about the disturbance to control how and when the electrical conversion process will occur.
Owner:POLATIS PHOTONICS INC

Electrical generator having an oscillator containing a freely moving internal element to improve generator effectiveness

An apparatus and method for providing electrical energy to an electrical device by deriving the electrical energy from motion of the device. In one embodiment, the inventive apparatus includes a novel kinetic electrical power generator (KEPG) consisting of an inventive oscillating weight having an internal cavity with a freely movable acceleration element disposed therein, resulting in improved acceleration and oscillation capabilities and lower motion threshold for the weight, a system for converting the weight's oscillating motion into rotational motion, and an electromechanical transducer system for generating electrical energy from the rotational motion. The novel KEPG includes components for modifying the electrical energy for storing and/or feeding the modified electrical energy to the electrical device. Optional components may be included for using the modified electrical energy to recharge one or more rechargeable batteries used in an electric device. Alternate advantageous embodiments of the inventive apparatus include, but are not limited to: a KEPG with multiple inventive oscillating weights to increase velocity and frequency of desirable rotational motion, and a KEPG system utilizing multiple electrically coupled KEPG sub-systems.
Owner:POWER ESTIMATE

Vibration actuator having magnetic circuit elastically supported by a spiral damper with increased compliance

A vibration actuator includes an electromechanical transducer having a magnetic circuit (1-4) and a driving coil (5), a support frame (9), and a damper (270) elastically supporting the magnetic circuit onto the support frame to flexibly damp the vibration of the magnetic circuit when a driving AC current is supplied to the coil (5). The damper (270) comprises inner and outer ring portions (271, 272) and a plurality of spiral spring portions (273) determined by a plurality of spiral slits (274, 275) formed in the damper. In order to reduce the spiral spring portion determined by the adjacent two spiral slits in its compliance, each of the spiral spring portions has an effective spring length determined by an effective angle (theta) which is determined as an angle (by angular degree) from an inner end of the inner spiral slit to an outer end of the outer spiral slit defining each respective spiral spring portion around a center of the damper. The effective angle is 55 angular degree or more. In a preferable example, the effective spring length is determined by a product (r.theta) of an average radius (r) value by the unit of "mm" and the effective angle (theta) value by unit of the angular degree. The effective spring length is selected to 320 or more, and preferably 400 or more.
Owner:TOKIN CORP

Method and a device for recording mechanical oscillations in soft biological tissues

PCT No. PCT/EE97/00001 Sec. 371 Date Sep. 24, 1998 Sec. 102(e) Date Sep. 24, 1998 PCT Filed Mar. 21, 1997 PCT Pub. No. WO97/35521 PCT Pub. Date Oct. 2, 1997The method and device for recording mechanical oscillations in soft biological tissues consists of the following: biological tissue is mechanically influenced by means of the testing end (6) of the device and its mechanical responses are subsequently recorded as a graph representing the evoked oscillations. Prior to that, an inflexible plane means (12) is fastened onto the biological tissue in order to designate the area under investigation and connect the testing end with the tissue, causing no harm to the latter. After that the testing end will be inflexibly connected with the inflexible plane means for the time period it takes to influence the tissue mechanically and record its mechanical response. The device consists of a frame (1), a pivotable double-armed lever (2), an electromechanical transducer (3), a shutter (4), a grip, an electromechanical pickup (5), a testing end (6), a pivot (7), a testing end driver (8, 9), a control switch (11), a control panel (10), and an inflexible plane means (12) for marking on the tissue the area under investigation and for connecting the testing end with the tissue permanently and inflexibly, causing no harm to the biological tissue. The length of the testing end (6) is adjustable by means of, for instance, a bayonet joint.
Owner:MYOTON
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products