Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

390 results about "Sparse array" patented technology

In computer science, a sparse array is an array in which most of the elements have the same value. The occurrence of zero elements in a large array is inefficient for both computation and storage. An array in which there is a large number of zero elements is referred to as being sparse. In the case of sparse arrays, one can ask for a value from an "empty" array position. If one does this, then for an array of numbers, a value of zero should be returned, and for an array of objects, a value of null should be returned. A naive implementation of an array may allocate space for the entire array, but in the case where there are few non-default values, this implementation is inefficient. Typically the algorithm used instead of an ordinary array is determined by other known features of the array. For instance, if the sparsity is known in advance or if the elements are arranged according to some function. A heap memory allocator in a program might choose to store regions of blank space in a linked list rather than storing all of the allocated regions in, say a bit array.

Method for optimizing space between broad band phased array elements and measuring frequency and direction of frequency domain multiple targets

InactiveCN101349742AImproved DF resolutionSolve the direction finding ambiguity problemRadio wave finder detailsRadio wave direction/deviation determination systemsFrequency measurementsArray element
The invention discloses a method for matrix element distance optimization and frequency domain multi target frequency and direction measurement of wideband phased arrays, for realizing the direction measurement of multiple targets having narrow band coherence and irrelevance of a wideband receiver, resolving the contradiction between the direction measurement resolution and unambiguous direction measurement of sparse array, and realizing more accurate target detection under a certain channel error. The method comprises the steps of: first using uneven array, using genetic algorism to optimize the distance of array elements to satisfy the higher direction measurement resolution and high direction measurement accuracy of spatial unambiguous condition; based on the optimized array, realizing the frequency domain multi target frequency and direction measurement algorism as a DOA evaluation algorism which processes frequency domain accumulation, frequency domain check and frequency measurement for the data of each array element channel and realizes frequency automatic match. The algorism adopts array optimization, frequency domain peak snapshot frequency and direction measurement joint algorism. The invention can be applied for the multi narrow band target accurate frequency and direction measurement of wideband receivers in the airborne and satellite-borne electronic reconnaissance.
Owner:XIDIAN UNIV

Progressive image decoder for wavelet encoded images in compressed files and method of operation

A progressive image display decoder and method of operation for wavelet encoded images achieves reduced memory storage requirements for wavelet transform coefficients and reduced execution time in displaying the image thereby overcoming the limitations of the prior art. Conveniently, a wavelet image format, typically DjVu IW44 facilitates progressive rendering and smooth scrolling of large color or gray level images with limited memory requirements. The progressive wavelet decoder is composed of two components. The first component decodes the incoming image data and updates an array of wavelet coefficients. The second component applies an inverse wavelet transform to the array of wavelet coefficients for the purpose of reconstructing the image. The operation of the first component (the decoder) is triggered by the incoming compressed image data. The received data is decoded and is used to apply updates to an array of wavelet coefficients. Each update improves the accuracy of the coefficients and therefore improves the fidelity of the reconstructed image. The coefficient array is composed of several two-dimensional arrays (one for each of the color components) having one entry corresponding to each 32x32 blocks in the image. Each entry contains 1024 wavelet coefficients organized as a sparse array with two levels of indirection. The operation of the second component (the renderer) is typically triggered when enough data has been received to display an updated version of the image, or when the user performs an action which requires displaying a new part of the image. In the latter case, the renderer only reconstructs the pixel values for the parts of the image, which are needed. A further reduction of the computation time is obtained by using "lifting" for implementing a fast inverse wavelet transform.
Owner:AMERICAN TELEPHONE & TELEGRAPH CO

Array sparse method for broadband non-frequency-variable multi-beam imaging sonar

The invention discloses an array sparse method for a broadband non-frequency-variable multi-beam imaging sonar. With the Bessel function, fitting of influences on array guiding vectors by different frequency points in the broadband signal bandwidth is performed and a broadband signal multi-beam forming model under the far-field situation is established; on the premise that the formed multiple beams approximate a reference beam, a minimum number of effective array elements are searched and multiple sets of weighting coefficients are calculated; a highly nonlinear sparse array optimization problem is transformed into a sparse signal reconstruction problem in the compressed sensing theory, a reconstruction weighting coefficient is calculated iteratively by an underdetermined system localizedsolution algorithm, and a sparse array structure is determined; a convex optimization theory is introduced so as to form a plurality of low-side-lobe beams and a multi-beam array sparse side-lobe suppression model for array element excitation is established. According to the invention, the main lobes of a plurality of formed beams are not extended with changes of signal operating frequencies; andpeak side-lobe levels of multiple beams formed by the sparse array are reduced effectively.
Owner:NANJING UNIV OF AERONAUTICS & ASTRONAUTICS

Method for suppressing uniform ultra-sparse array antenna beam pointing fuzziness

The invention belongs to a method for processing uniform ultra-sparse array antenna beam pointing fuzziness in the radar technology. The method comprises the steps of; performing initialization processing; performing directional transmission and reception by a first main lobe according to the set reference working frequency and two associated working frequency and pulse number in turn and performing comprehensive processing on the acquired three groups of target information so as to determine the existence of the target and removing pointing fuzziness caused by a grating lobe; when the target exists, inputting the angle and distance, speed and magnitude value of the target into a radar data processor together; and then repeatedly performing the processing on other main lobes so as to finish detection of the target on the pointing position of each main lobe. In the method, the angle range without grating lobe fuzziness is two times wider than that of two pieces of background technology and the array element number is reduced by over 50 percent, so that the method for the suppressing the uniform ultra-sparse array antenna beam pointing fuzziness is characterized in that: adverse impact of the grating lobe on the radar measured angle can be removed to the full extent; the antenna array element number and corresponding channel number of large-aperture uniform array radar are effectively reduced; the system cost is reduced, the application range is enlarged, and the like.
Owner:UNIV OF ELECTRONICS SCI & TECH OF CHINA
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products