Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

16814 results about "Photoelectric conversion" patented technology

Solid-state imaging device, method of manufacturing the same, and electronic apparatus

A solid-state imaging device includes: a pixel region in which a plurality of pixels composed of a photoelectric conversion section and a pixel transistor is arranged; an on-chip color filter; an on-chip microlens; and a multilayer interconnection layer in which a plurality of layers of interconnections is formed through an interlayer insulating film. The solid-state imaging device further includes a light-shielding film formed through an insulating layer in a pixel boundary of a light receiving surface in which the photoelectric conversion section is arranged.
Owner:SONY CORP

Semiconductor image sensor module and method of manufacturing the same

A CMOS type semiconductor image sensor module wherein a pixel aperture ratio is improved, chip use efficiency is improved and furthermore, simultaneous shutter operation by all the pixels is made possible, and a method for manufacturing such semiconductor image sensor module are provided. The semiconductor image sensor module is provided by stacking a first semiconductor chip, which has an image sensor wherein a plurality of pixels composed of a photoelectric conversion element and a transistor are arranged, and a second semiconductor chip, which has an A / D converter array. Preferably, the semiconductor image sensor module is provided by stacking a third semiconductor chip having a memory element array. Furthermore, the semiconductor image sensor module is provided by stacking the first semiconductor chip having the image sensor and a fourth semiconductor chip having an analog nonvolatile memory array.
Owner:SONY CORP

Method for manufacturing photoelectric conversion device

To form a microcrystalline semiconductor with high quality which can be directly formed at equal to or less than 500° C. over a large substrate with high productivity without decreasing a deposition rate. In addition, to provide a photoelectric conversion device which employs the microcrystalline semiconductor as a photoelectric conversion layer. A reactive gas containing helium is supplied to a treatment chamber which is surrounded by a plurality of juxtaposed waveguides and a wall, the pressure in the treatment chamber is maintained at an atmospheric pressure or a subatmospheric pressure, microwave is supplied to a space sandwiched between the juxtaposed waveguides to generate plasma, and a photoelectric conversion layer of a microcrystalline semiconductor is deposited over a substrate which is placed in the treatment chamber.
Owner:SEMICON ENERGY LAB CO LTD

Solid-state image sensor and manufacturing method thereof

ActiveUS20060278948A1Small aperture widthLight-condensing efficiencySolid-state devicesRadiation controlled devicesRefractive indexPhotoelectric conversion
An object of the present invention is to provide a small solid-state image sensor which realizes significant improvement in sensitivity. The solid-state image sensor of the present invention includes a semiconductor substrate in which photoelectric conversion units are formed, a light-blocking film which is formed above the semiconductor substrate and has apertures formed so as to be positioned above respective photoelectric conversion units, and a high refractive index layer formed in the apertures. Here, each aperture has a smaller aperture width than a maximum wavelength in a wavelength of light in a vacuum converted from a wavelength of the light entering the photoelectric conversion unit through the apertures, and the high refractive index is made of a high refractive index material having a refractive index which allows transmission of light having the maximum wavelength through the aperture.
Owner:PANASONIC CORP

Optical fiber communications method and system without a remote electrical power supply

The present invention allows remote antenna units for radio frequency signal transmission and receipt to operate without the requirement for remote electrical power supplies or for connecting cables that incorporate electrical conductors. According to an aspect of the present invention, an optical communications system employing radio frequency signals comprises a central unit; at least one remote unit having at least one optoelectronic transducer for converting optical data signals to radio frequency signals and converting radio signals to optical signals and at least one antenna to receive and send radio frequency signals; at least one optical fiber data link between the central unit and the remote unit for transmitting optical data signals therebetween; and at least one optical fiber power link between the central unit and the remote unit for providing electrical power at the remote unit.
Owner:NEXTG NETWORKS INC

Substrate for photoelectric conversion device, photoelectric conversion device, and stacked photoelectric conversion device

A substrate 1 for a photoelectric conversion device includes a first transparent conductive layer 5 formed on at least a part of the surface region of a transparent substrate 3, the first transparent conductive layer 5 having at least an opening portion 7 exposing the substrate 3.
Owner:SHARP KK

Image sensing apparatus, image sensing system and focus detection method

An image sensing apparatus including: an image sensor including a plurality of focus detection pixel pairs that perform photoelectric conversion on each pair of light beams that have passed through different regions of a photographing lens and output an image signal pair; a flash memory that stores shift information on relative shift between an optical axis of the photographing lens and a central axis of the focus detection pixel pairs; a correction unit that corrects a signal level of the image signal pair based on the shift information and exit pupil information of the photographing lens so as to compensate for an unbalanced amount of light that enters each of the focus detection pixel pairs; and a focus detection unit that detects a focus of the photographing lens using the image signal pair corrected by the correction unit.
Owner:CANON KK

Solid-state imaging device, imaging apparatus, and method for manufacturing solid-state imaging device

A solid-state imaging device is provided and includes: a substrate; a plurality of photoelectric conversion elements arranged in a one-dimensional or two-dimensional array above the substrate, the plurality of photoelectric conversion elements being divided into a plurality of photoelectric conversion element groups; a semiconductor substrate between the substrate and the plurality of photoelectric conversion elements, corresponding to each of the plurality of photoelectric conversion clement groups; and a signal output section in the semiconductor substrates. The signal output section outputs a signal corresponding to an electric charge generated in each photoelectric conversion elements of a photoelectric conversion element group corresponding to the semiconductor substrate.
Owner:FUJIFILM CORP

Semiconductor device and method of manufacturing the same

A semiconductor device having a semiconductor element (a thin film transistor, a thin film diode, a photoelectric conversion element of silicon PIN junction, or a silicon resistor element) which is light-weight, flexible (bendable), and thin as a whole is provided as well as a method of manufacturing the semiconductor device. In the present invention, the element is not formed on a plastic film. Instead, a flat board such as a substrate is used as a form, the space between the substrate (third substrate (17)) and a layer including the element (peeled layer (13)) is filled with coagulant (typically an adhesive) that serves as a second bonding member (16), and the substrate used as a form (third substrate (17)) is peeled off after the adhesive is coagulated to hold the layer including the element (peeled layer (13)) by the coagulated adhesive (second bonding member (16)) alone. In this way, the present invention achieves thinning of the film and reduction in weight.
Owner:SEMICON ENERGY LAB CO LTD

Solid-state imaging device, imaging apparatus, and method for manufacturing solid-state imaging device

A solid-state imaging device is provided and includes: a substrate; a plurality of photoelectric conversion elements arranged in a one-dimensional or two-dimensional array above the substrate, the plurality of photoelectric conversion elements being divided into a plurality of photoelectric conversion element groups; a plurality of semiconductor substrates between the substrate and the plurality of photoelectric conversion elements, each of the plurality of semiconductor substrates corresponding to each of the plurality of photoelectric conversion element groups; and a signal output section in the plurality of semiconductor substrates. The signal output section outputs a signal corresponding to an electric charge generated in each photoelectric conversion elements of a photoelectric conversion element group corresponding to a semiconductor substrate.
Owner:FUJIFILM CORP

Photoelectric conversion device and method for producing same

InactiveUS20020040728A1Promote conversionPrevent deterioration and volatilityLight-sensitive devicesDeferred-action cellsArylHydrogen atom
A method for producing a photoelectric conversion device comprising a conductive support and a photosensitive layer containing a semiconductor fine particle on which a dye is adsorbed, wherein the semiconductor fine particle is treated with a compound represented by the following general formula (I): wherein X represents an oxygen atom, a sulfur atom, a selenium atom or NY, in which Y represents a hydrogen atom, an aliphatic hydrocarbon group, a hydroxyl group or an alkoxy group; R1, R2, R3 and R4 independently represent a hydrogen atom, an aliphatic hydrocarbon group, an aryl group, a heterocyclic group, -N(R5)(R6), -C(=O)R7, -C(=S)R8, -SO2R9 or -OR10; R5 and R6 few independently have the same meaning as the R1, R2, R3 and R4; R7, R8 and R9 independently represent a hydrogen atom, an aliphatic hydrocarbon group, an aryl group, a heterocyclic group, -N(R5)(R6), -OR10 or -SR11; and R10 and R11 independently represent a hydrogen atom or an aliphatic hydrocarbon group.
Owner:FUJIFILM CORP

Solid-state imaging device and production method therefor

By improving the embedding property of a light-transmissive material constituting a waveguide, light collection efficiency is improved, and reliability of a solid-state imaging device is ensured. In a solid-state imaging device including a light-receiving section (1) which performs photoelectric conversion in response to receipt of light and a waveguide (20) composed of a light-transmissive material formed in an insulating film 5 which covers a substrate provided with the light-receiving section (1), in which the waveguide (20) guides incident light from outside to the light-receiving section (1), the waveguide (20) is provided with a forward tapered portion in which the size of the planar shape viewed from the direction of incident light decreases from the light incident side surface toward the light-receiving section.
Owner:SONY CORP

Photoelectric conversion element and solid-state image pickup device

A photoelectric conversion element comprises a photoelectric conversion section that includes: a pair of electrodes; and a photoelectric conversion layer disposed between the pair of electrodes, wherein the photoelectric conversion section further comprises between one of the pair of electrodes and the photoelectric conversion layer a first charge-blocking layer that restrains injection of charges from the one of the electrodes into the photoelectric conversion layer when a voltage is applied to the pair of electrodes, and the first charge-blocking layer comprises a plurality of layers.
Owner:FUJIFILM CORP

Solid state image pickup device and camera

An solid state image pickup device including a plurality of photoelectric conversion regions (PD1, PD2) for generating carriers by photoelectric conversions to accumulate the generated carriers, an amplifying unit for amplifying the carriers, being commonly provided to at least two photoelectric conversion regions, a first and a second transfer units (Tx-MOS1, Tx-MOS2) for transferring the carriers accumulated in the first and the second photoelectric conversion regions, respectively, a first and a second carrier accumulating units (Cs1, Cs2) for accumulating the carriers flowing out from the first and the second photoelectric conversion regions through a first and a second fixed potential barriers, respectively, and a third and a fourth transfer units (Cs-MOS1, Cs-MOS2) for transferring the carriers accumulated in the first and the second carrier accumulating units to the amplifying unit, respectively.
Owner:CANON KK

Area sensor and display apparatus provided with an area sensor

An area sensor of the present invention has a function of displaying an image in a sensor portion by using light-emitting elements and a reading function using photoelectric conversion devices. Therefore, an image read in the sensor portion can be displayed thereon without separately providing an electronic display on the area sensor. Furthermore, a photoelectric conversion layer of a photodiode according to the present invention is made of an amorphous silicon film and an N-type semiconductor layer and a P-type semiconductor layer are made of a polycrystalline silicon film. The amorphous silicon film is formed to be thicker than the polycrystalline silicon film. As a result, the photodiode according to the present invention can receive more light.
Owner:SEMICON ENERGY LAB CO LTD

Organic photoelectric conversion element and method of producing the same, organic photodiode and image sensor using the same, organic diode and method of producing the same

The organic photoelectric conversion element in accordance with the invention comprises at least one pair of electrodes 12 and 16, a photoelectric conversion region (layer) 15 arranged between the electrodes and containing at least an electron donating organic material and an electron accepting organic material, and a buffer layer 14 containing at least one inorganic matter and inserted between the photoelectric conversion region and at least one electrode of the above-cited pair of electrodes.
Owner:PANASONIC CORP

Arrangement of circuits in pixels, each circuit shared by a plurality of pixels, in image sensing apparatus

InactiveUS6977684B1Good performance without deterioration in resolutionReduce noiseTelevision system detailsTelevision system scanning detailsEngineeringPhotoelectric conversion
In an image sensing apparatus having a plurality of unit cells, each including a plurality of photoelectric conversion elements and a common circuit shared by the plurality of photoelectric conversion elements, arranged in either one or two dimensions, the plurality of photoelectric conversion elements are arranged at a predetermined interval.
Owner:CANON KK

High efficiency multi-active layer tunnel regenerated white light emitting diode

InactiveUS20050067627A1Improved current spreadingEasy to spreadSemiconductor devicesGreen cellSemiconductor materials
A high efficiency and high brightness multi-active layer tunneling regenerated white color semiconductor light emitting diode having a p type electrode 1, a monolithic red light cell 14, a tunnel junction 9, a monolithic green light 15 and blue light cell 16 (or a monolithic cyan light cell 19), wherein each of said cells are electrically connected by tunnel junctions 9, and the red cell physically connected with blue and green cell (or cyan cell) by wafer bonding layer 8. The lights from each cell synthesize white color light. The white light emitting diode only has one time optical-electrical conversion, so the quantum efficiency is high. Moreover, the white LED totally made from semiconductor materials, the lifetime of the white LED lamp is not limited by the relatively short lifetime of fluorescent material.
Owner:BEIJING UNIV OF TECH

Solid-state image sensing element and its design support method, and image sensing device

A solid-state image sensing element has a photoelectric conversion element which converts incoming light into an electrical signal in accordance with an amount of the light, a microlens which is arranged on an incident surface, a light guide which is arranged between the photoelectric conversion element and the microlens, and an insulating interlayer which is arranged around the light guide. The solid-state image sensing element located at a distance (H) satisfies: H·DL·P<a·NHNL⁢ ⁢for⁢ ⁢0<a<1where L is the distance from an exit pupil of an image sensing optical system of an image sensing device, which mounts an image sensor formed by two-dimensionally arranging a plurality of the solid-state image sensing elements, H is the distance from a center of the image sensor to a position of the solid-state image sensing element on the image sensor, D is the height from the photoelectric conversion element to an apex of the microlens, P is the spacing between the plurality of solid-state image sensing elements, NH is the refractive index of the light guide, and NL is the refractive index of the insulating interlayer.
Owner:CANON KK

Organic photoelectric conversion device and stack type photoelectric conversion device

An organic photoelectric conversion device comprising; a lower electrode; an organic layer; and an upper electrode provided in this order, in which at least one of the lower electrode and the upper electrode is a transparent electrode and an electron is collected in a side of one of the lower electrode and the upper electrode and a hole is collected in a side of other of the lower electrode and the upper electrode so as to read out photocurrent, wherein the electrode in the side of collecting an electron is the transparent electrode and has a word function of 4.5 eV or less.
Owner:FUJIFILM CORP +1

Solid-state image pickup apparatus and image pickup system

An apparatus according to the present invention in which a first substrate including a photoelectric conversion element and a gate electrode of a transistor, and a second substrate including a peripheral circuit portion are placed upon each other. The first substrate does not include a high-melting-metal compound layer, and the second substrate includes a high-melting-metal compound layer.
Owner:CANON KK

Solar cell and solar cell module

A photoelectric converter generates carriers by photoelectric conversion. A multiple finger electrodes are electrically coupled to the photoelectric converter. The finger electrodes collect carriers generated in the photoelectric converter. The finger electrodes contain a sintering conductive material as an essential ingredient. A bus-bar electrode is electrically coupled to the multiple finger electrodes. The bus-bar electrode collects the carriers from the finger electrodes. The bus-bar electrode contains a thermosetting conductive material as an essential ingredient.
Owner:PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO LTD

Solid-state imaging apparatus

A solid-state imaging apparatus wherein an FD capacitor value is variable without increasing the number of elements. There is provided a solid-state imaging apparatus including a plurality of photoelectric conversion elements arranged in a horizontal direction and a vertical direction, for generating an electric charge by photoelectric conversion; a plurality of transfer transistors each connected to each of the photoelectric conversion elements, for transferring the electric charge generated by the plurality of photoelectric conversion elements; a plurality of floating diffusion regions for holding the electric charge transferred by the transfer transistors; a plurality of amplifiers each connected to each of the floating diffusion regions, for amplifying a signal based on the electric charge in the plurality of floating diffusion regions; and a connecting unit for connecting and disconnecting between the plurality of floating diffusion regions.
Owner:CANON KK

Solid-state imaging device, drive method thereof and electronic apparatus

A solid-state imaging device includes: plural photodiodes formed in different depths in a unit pixel area of a substrate; and plural vertical transistors formed in the depth direction from one face side of the substrate so that gate portions for reading signal charges obtained by photoelectric conversion in the plural photodiodes are formed in depths corresponding to the respective photodiodes.
Owner:SONY CORP

Semiconductor device

A photoelectric conversion device includes a light detection circuit which includes an optical sensor to output a current signal corresponding to illuminance and a current-voltage conversion circuit to convert the current signal output from the optical sensor into a voltage signal; an amplifier to amplify the voltage signal output from the light detection circuit; a comparison circuit to compare voltage output from the amplifier and reference voltage and output the result to a control circuit; and the control circuit to determine an illuminance range to be detected depending on the output from the comparison circuit and output a control signal to the light detection circuit. The current-voltage conversion circuit has a function of changing a resistance value in accordance with the control signal.
Owner:SEMICON ENERGY LAB CO LTD

Solid-state imaging device

A photoelectric conversion device suitable for use as an element of a photodetector array includes a photodiode for generating a first signal charge in response to incident light, an output unit including a JFET, and at least one transistor having an electrode that generates a second signal charge in response to incident light. The first and second signal charges may be output separately or combined. The second signal charge, or the first and second signal charges combined, may be monitored during an exposure time to determine the desired end of the exposure. An image sensor array may have one or more pixels with such light monitoring capability. The output signal for monitoring the light may be output over a reset drain interconnection, directly from the monitoring pixel or through other pixels via inter-pixel MOSFETS. Exposure time may be controlled, by timing a shutter or a strobe or the like, based on the monitored accumulation of signal charge during exposure. Microlenses may be provided on-chip to increase the effective aperture ratio of the array. The microlenses are designed to avoid interfering with the incident light used for monitoring. Resulting pixel-to-pixel variations in effective aperture ratio, if any, may be electronically compensated.
Owner:NIKON CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products