Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

7027 results about "Blocking layer" patented technology

Organic electroluminescent element, illuminator, display and compound

An organic electroluminescent element comprising a light emission layer and a hole blocking layer adjacent to the light emission layer, wherein, (i) the light emission layer contains a compound having a specified partial structure and having a molecular weight of not more than 1700; and (ii) the hole blocking layer contains a derivative selected from the group consisting of a styryl derivative, a boron derivative and a carboline derivative.
Owner:KONICA MINOLTA INC

Electron transporting compounds and organic electroluminescent devices using the same

Disclosed is a novel compound of Formula 1 and an organic electroluminescent device using the same. In Formula 1, X and Y independently represents a hydrogen, an aromatic or a hetero aromatic hydrocarbon having C5 to C10 carbons; X and Y may be the same or different; Ar1 to Ar2 each represent a hydrogen, an unsubstituted or substituted aromatic hydrocarbon having C4 to C12 carbons, or an unsubstituted or substituted condensed polycyclic aromatic hydrocarbon having C4 to C12 carbons; Ar1 to Ar2 can form a fused aromatic ring system with the adjacent aromatic hydrocarbons. The compound of Formula 1 is present in the electron injection or a transport material, or an exciton blocking layer in the organic light emitting device, and thereby improving the device stability, lowering the operational voltage.
Owner:E RAY OPTOELECTRONICS TECH

Vertical channel type nonvolatile memory device and method for fabricating the same

A method for fabricating, a vertical channel type nonvolatile memory device includes: alternately forming a plurality of sacrificial layers and a plurality of interlayer dielectric layers over a semiconductor substrate; etching the sacrificial layers and the interlayer dielectric layers to form a plurality of first openings for channel each of which exposes the substrate; filling the first openings to form a plurality of channels protruding from the semiconductor substrate; etching the sacrificial layers and the interlayer dielectric layers to form second openings for removal of the sacrificial layers between the channels; exposing sidewalls of the channels by removing the sacrificial layers exposed by the second openings; and forming a tunnel insulation layer, a charge trap layer, a charge blocking layer, and a conductive layer for gate electrode on the exposed sidewalls of the channels.
Owner:SK HYNIX INC

LONG WAVELENGTH NONPOLAR AND SEMIPOLAR (Al,Ga,In)N BASED LASER DIODES

A laser diode, grown on a miscut nonpolar or semipolar substrate, with lower threshold current density and longer stimulated emission wavelength, compared to conventional laser diode structures, wherein the laser diode's (1) n-type layers are grown in a nitrogen carrier gas, (2) quantum well layers and barrier layers are grown at a slower growth rate as compared to other device layers (enabling growth of the p-type layers at higher temperature), (3) high Al content electron blocking layer enables growth of layers above the active region at a higher temperature, and (4) asymmetric AlGaN SPSLS allowed growth of high Al containing p-AlGaN layers. Various other techniques were used to improve the conductivity of the p-type layers and minimize the contact resistance of the contact layer.
Owner:RGT UNIV OF CALIFORNIA

Group III nitride semiconductor light emitting device

A group III nitride semiconductor light emitting device according to the present invention includes an immediate layer formed of AlxGa1-x-yInyN (0<x<1, 0<y<1, x+y<1) between an active layer and a cladding layer and an electron blocking layer formed of p-type group III nitride semiconductor having a smaller electron affinity than that of the intermediate layer so as to be in contact with the intermediate layer. The semiconductor light emitting layer may be a laser diode or a LED.
Owner:PANASONIC CORP

Semiconductor memory device including charge trap layer with stacked nitride layers

InactiveUS20080042192A1High trap densitySemiconductor devicesCrystal structureNitride
A semiconductor memory device includes a semiconductor substrate, a tunnel insulating layer, charge trap layer, and a blocking layer. The tunnel insulating layer is on the semiconductor substrate. The charge trap layer is on the tunnel insulating layer and includes at least one pair of a first nitride layer with a higher trap density of holes than electrons and a second nitride layer with a higher trap density of electrons than holes. The blocking layer is on the charge trap layer opposite to the tunnel insulating layer. The first nitride layer may include silicon rich nitride, which may have a ratio of silicon to nitride of greater than 1 and less than or equal to 2. The second nitride layer may include aluminum nitride which may have a hexagonal crystalline structure.
Owner:SAMSUNG ELECTRONICS CO LTD

TFT floating gate memory cell structures

A device having thin-film transistor (TFT) floating gate memory cell structures is provided. The device includes a substrate, a dielectric layer on the substrate, and one or more source or drain regions being embedded in the dielectric layer. the dielectric layer being associated with a first surface. Each of the one or more source or drain regions includes an N+ polysilicon layer on a diffusion barrier layer which is on a first conductive layer. The N+ polysilicon layer has a second surface substantially co-planar with the first surface. Additionally, the device includes a P− polysilicon layer overlying the co-planar surface and a floating gate on the P− polysilicon layer. The floating gate is a low-pressure CVD-deposited silicon layer sandwiched by a bottom oxide tunnel layer and an upper oxide block layer. Moreover, the device includes at least one control gate made of a P+ polysilicon layer overlying the upper oxide block layer. A method of making the same memory cell structure is provided and can be repeated to integrate the structure three-dimensionally.
Owner:SEMICON MFG INT (SHANGHAI) CORP +1

Semiconductor device

On a semiconductor substrate a silicon oxide film is formed and provided with a recess. In the recess a reflector layer of copper is disposed as a blocking layer with a barrier metal posed therebetween. The reflector layer of copper is covered with a silicon oxide film and thereon a fuse region provided with a plurality of fuses is provided. The reflector layer of copper has a plane of reflection recessed downward to reflect a laser beam. The reflector layer of copper is arranged to overlap substantially the entirety of the fuse region, as seen in a plane. A laser beam radiated to blow the fuse can have a reduced effect on a vicinity of the fuse region. A semiconductor device reduced in size can be obtained.
Owner:RENESAS ELECTRONICS CORP

Oxynitride laminate "blocking layer" for thin film semiconductor devices

Channel doping is an effective method for controlling Vth, but if Vth shifts to the order of -4 to -3 V when forming circuits such as a CMOS circuit formed from both an n-channel TFT and a P-channel TFT on the same substrate, then it is difficult to control the Vth of both TFTs with one channel dope. In order to solve the above problem, the present invention forms a blocking layer on the back channel side, which is a laminate of a silicon oxynitride film (A) manufactured from SiH4, NH3, and N2O, and a silicon oxynitride film (B)manufactured from SiH4and N2O. By making this silicon oxynitride film laminate structure, contamination by alkaline metallic elements from the substrate can be prevented, and influence by stresses, caused by internal stress, imparted to the TFT can be relieved.
Owner:SEMICON ENERGY LAB CO LTD

Non-volatile memory device and method for fabricating the same

A non-volatile memory device includes a channel layer vertically extending from a substrate, a plurality of inter-layer dielectric layers and a plurality of gate electrodes that are alternately stacked along the channel layer, and an air gap interposed between the channel layer and each of the plurality of gate electrodes. The non-volatile memory device may improve erase operation characteristics by suppressing back tunneling of electrons by substituting a charge blocking layer interposed between a gate electrode and a charge storage layer with an air gap, and a method for fabricating the non-volatile memory device.
Owner:SK HYNIX INC

Atomic layer deposition of tungsten material

An implementing mode of the invention provides an improved technology for depositing materials containing tungsten. The technology utilizes an infusion technology and a gaseous phase deposition technology, such as atomic layer deposition (ALD), to provide tungsten-containing materials with obviously improved surface evenness and yield. In one implementing mode, a method for forming tungsten-containing materials on a substrate is provided. The method comprises deposing a substrate, which contains a bottom coating deposited thereon, in a technological chamber; exposing the substrate orderly in a precursor of tungsten and reducing gases so as to deposit a tungsten nucleation layer on the bottom coating, during the ALD technology; and depositing a tungsten block layer on the tungsten nucleation layer. The invention is characterized in that the reducing gases comprise a hydrogen gas / hydride flow ratio of 40:1, 100:1, 500:1, 800: 1, 1000:1 or more, and comprise hydride such as diborane, silicane or silicoethane.
Owner:APPLIED MATERIALS INC

Photoelectric conversion element and solid-state image pickup device

A photoelectric conversion element comprises a photoelectric conversion section that includes: a pair of electrodes; and a photoelectric conversion layer disposed between the pair of electrodes, wherein the photoelectric conversion section further comprises between one of the pair of electrodes and the photoelectric conversion layer a first charge-blocking layer that restrains injection of charges from the one of the electrodes into the photoelectric conversion layer when a voltage is applied to the pair of electrodes, and the first charge-blocking layer comprises a plurality of layers.
Owner:FUJIFILM CORP

Solar cells using fullerenes

Organic photosensitive optoelectronic devices are disclosed. The devises comprise photoconductive organic thin films in a heterostructure, which include an exciton blocking layer to enhance device efficiency. The use of fullerenes in the electron conducting layer has lead to devices with high efficiency. Single heterostructure, stacked and wave-guide type embodiments are disclosed. Devices having multilayer structures and an exciton blocking layer are also disclosed. Guidelines for selection of exciton blocking layers are provided.
Owner:THE TRUSTEES FOR PRINCETON UNIV

Band engineered nano-crystal non-volatile memory device utilizing enhanced gate injection

ActiveUS20070045718A1Increased device feature scalingEfficient erasureTransistorNanoinformaticsCharge retentionNon symmetric
Non-volatile memory devices and arrays are described that utilize reverse mode non-volatile memory cells that have band engineered gate-stacks and nano-crystal charge trapping in EEPROM and block erasable memory devices, such as Flash memory devices. Embodiments of the present invention allow a reverse mode gate-insulator stack memory cell that utilizes the control gate for programming and erasure through a band engineered crested tunnel barrier. Charge retention is enhanced by utilization of high work function nano-crystals in a non-conductive trapping layer and a high K dielectric charge blocking layer. The band-gap engineered gate-stack with symmetric or asymmetric crested barrier tunnel layers of the non-volatile memory cells of embodiments of the present invention allow for low voltage tunneling programming and erase with electrons and holes, while maintaining high charge blocking barriers and deep carrier trapping sites for good charge retention.
Owner:MICRON TECH INC

Method for forming barrier layer and method for manufacturing semiconductor device

In a method for forming a barrier layer, the barrier layer is formed on a base layer having a three-dimensional structure before a dopant-containing layer is formed on the base layer. At this time, at least one of a film thickness, a film quality, and a film type of the barrier layer is controlled in a height direction of the three-dimensional structure by using an atomic layer deposition (ALD) process.
Owner:ASM IP HLDG BV

Structure and method for metal gate stack oxygen concentration control using an oxygen diffusion barrier layer and a sacrificial oxygen gettering layer

ActiveUS20100127336A1Increase their effective work functionTransistorSemiconductor/solid-state device manufacturingWork functionDiffusion barrier
A process is disclosed of forming metal replacement gates for NMOS and PMOS transistors with oxygen in the PMOS metal gates and metal atom enrichment in the NMOS gates such that the PMOS gates have effective work functions above 4.85 eV and the NMOS gates have effective work functions below 4.25 eV. Metal work function layers in both the NMOS and PMOS gates are oxidized to increase their effective work functions to the desired PMOS range. An oxygen diffusion blocking layer is formed over the PMOS gate and an oxygen getter is formed over the NMOS gates. A getter anneal extracts the oxygen from the NMOS work function layers and adds metal atom enrichment to the NMOS work function layers, reducing their effective work functions to the desired NMOS range. Processes and materials for the metal work function layers, the oxidation process and oxygen gettering are disclosed.
Owner:TEXAS INSTR INC

Non-volatile semiconductor memory device with alternative metal gate material

A non-volatile semiconductor memory device comprises a substrate including a source region, a drain region and a channel region provided between the source region and the drain region with a gate stack located above the channel region with a metal gate located above the gate stack. The metal gate is comprised of a metal having a specific metal work function relative to a composition of a layer of the gate stack that causes electrons to travel through the entire thickness of the blocking layer via direct tunneling. The gate stack preferably comprises a multiple layer stack selected from a group of multiple layer stacks consisting of: ONO, ONH, OHH, OHO, HHH, or HNH, where O is an oxide material, N is SiN, and H is a high κ material.
Owner:SAMSUNG ELECTRONICS CO LTD

Organic photoelectric conversion element and image element

An organic photoelectric conversion element comprises: a pair of electrodes; an organic photoelectric conversion layer arranged between the pair of electrodes; and an positive hole blocking layer arranged between one of the pair of electrodes and the organic photoelectric conversion layer, wherein an ionization potential of the positive hole blocking layer is larger than a work function of the adjoining electrode by 1.3 eV or more, and wherein an electron affinity of the positive hole blocking layer is equal to or larger than that of the adjoining organic photoelectric conversion layer. An electron blocking layer may be arranged between the other one of the pair of electrodes and the organic photoelectric conversion layer, wherein its electron affinity is smaller than a work function of the adjoining electrode by 1.3 eV or more, and its ionization potential is equal to or smaller than that of the adjoining organic photoelectric conversion layer.
Owner:FUJIFILM CORP +1

Confined Defect Profiling within Resistive Random Memory Access Cells

ActiveUS20150034898A1Improvement of resistive switching characteristicDigital storageBulk negative resistance effect devicesTitanium nitrideResistive switching
Provided are resistive random access memory (ReRAM) cells and methods of fabricating thereof. A stack including a defect source layer, a defect blocking layer, and a defect acceptor layer disposed between the defect source layer and the defect blocking layer may be subjected to annealing. During the annealing, defects are transferred in a controllable manner from the defect source layer to the defect acceptor layer. At the same time, the defects are not transferred into the defect blocking layer thereby creating a lowest concentration zone within the defect acceptor layer. This zone is responsible for resistive switching. The precise control over the size of the zone and the defect concentration within the zone allows substantially improvement of resistive switching characteristics of the ReRAM cell. In some embodiments, the defect source layer includes aluminum oxynitride, the defect blocking layer includes titanium nitride, and the defect acceptor layer includes aluminum oxide.
Owner:SANDISK TECH LLC

Touch panel

To increase the detection sensitivity of a touch panel, provide a thin touch panel, provide a foldable touch panel, or provide a lightweight touch panel. A display element and a capacitor forming a touch sensor are provided between a pair of substrates. Preferably, a pair of conductive layers forming the capacitor each have an opening. The opening and the display element are provided to overlap each other. A light-blocking layer is provided between a substrate on the display surface side and the pair of conductive layers forming the capacitor.
Owner:SEMICON ENERGY LAB CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products