Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.

13515results about How to "High detection sensitivity" patented technology

Display device

A highly reliable electrostatic-capacitive-type display device with a touch panel which allows a user to perform finger touch inputting and exhibits excellent detection sensitivity is provided. A transparent conductive film is formed above a back surface of an electrostatic-capacitive-type touch panel so as to block noises generated by a display device. A conductive member is provided to supply a voltage to a transparent conductive film formed above a back surface of the touch panel. An electrode which is formed on the electrostatic-capacitive-type touch panel is divided in accordance with a ratio between the number of X electrodes and the number of Y electrodes. A floating electrode is formed in a gap defined between the electrodes so as to adjust an area of the electrode. Due to the shrinkage of the area of the electrode, it is possible to lower a noise level to a level equal to or lower than a signal level. Accordingly, an S / N ratio is increased thus enhancing detection sensitivity. Further, lines are branched on a flexible printed circuit board and intersecting lines are formed on a back surface of the flexible printed circuit board, and the intersecting lines are made to orthogonally intersect with lines formed on a front surface of the flexible printed circuit board thus lowering line capacitance.

Solid-state image capturing device, image capturing device, and manufacturing method of solid-state image capturing device

A solid-state image capturing device, includes a semiconductor board, upon which same semiconductor board are disposed in a predetermined order: a first detecting unit for detecting a first wavelength region component within an electromagnetic wave; and a second detecting unit for detecting a second wavelength region component which is longer wavelength side than at least the first wavelength region component, wherein in the depth direction from the surface of the semiconductor board, a valid region where a first electroconductive type dopant of the second detecting unit is formed reaches a portion deeper than a valid region where a first electroconductive type dopant of the first detecting unit is formed.

Nanoelectromechanical and Microelectromechanical Sensors and Analyzers

The present invention provides methods, devices and device components for detecting, sensing and analyzing molecules. Detectors of the present invention provide good detection sensitivity over a wide range of molecular masses ranging from a few Daltons up to 10s of megadaltons, which does not decrease as function of molecular mass. Sensors and analyzers of the present invention detect emission from an array of resonators to determine the molecular masses and / or electric charges of molecules which impact or contact an external surface of a membrane that is used to mount and excite the resonators in the array. Resonators in the array are excited via piezoelectric and / or magnetic excitation of the mounting membrane and, optionally, grid electrodes are used in certain configurations for electrically biasing for the resonator array, and for amplification or suppression of emission from the resonators so as to provide detection and mass / electric charge analysis with good sensitivity and resolution.

Spectral imaging of deep tissue

Apparatus and methods are provided for the imaging of structures in deep tissue within biological specimens, using spectral imaging to provide highly sensitive detection. By acquiring data that provides a plurality of images of the sample with different spectral weightings, and subsequent spectral analysis, light emission from a target compound is separated from autofluorescence in the sample. With the autofluorescence reduced or eliminated, an improved measurement of the target compound is obtained.

Method for detecting quantum dot mark fast immune chromatographic test paper bar

The present invention relates to a detection method of quantum point labeled quick immunochromatographic test paper strip, belonging to the field of detection technology. Said invention is characterized by that the antibody of quantum point labeled objective material can be coated on the glass fibre membrane, another antibody of objective material and second antibody are respectively coated on the nitrocellulose membrane or nitrocellulose / acetyl cellulose mixed membrane to form detection band and quality control band, on the polyester or plastic plate the glass fibre membrane and nitrocellulose membrane can be made into the immunochromatographic test paper strip. Said invention also provides the concrete steps of said detection method by utilizing said test paper strip and the concrete application range of said test paper strip.

Diagnostic testing process and apparatus

A method and apparatus for use in a flow through assay process is disclosed. The method is characterised by a “pre-incubation step” in which the sample which is to be analysed, (typically for the presence of a particular protein), and a detection analyte (typically an antibody bound to colloidal gold or a fluorescent tag) which is known to bind to the particular protein may bind together for a desired period of time. This pre incubation step occurs before the mixture of sample and detection analyte come into contact with a capture analyte bound to a membrane. The provision of the pre-incubation step has the effect of both improving the sensitivity of the assay and reducing the volume of sample required for an assay. An apparatus for carrying out the method is disclosed defining a pre-incubation chamber for receiving the sample and detection analyte having a base defined by a membrane and a second membrane to which a capture analyte is bound. In one version the pre-incubation chamber is supported above the second membrane in one position but can be pushed into contact with the membrane carrying the capture analyte thus permitting fluid transfer from the incubation chamber through the capture membrane. In another version the membrane at the base of the incubation chamber is hydrophobic and its underside contacts the capture membrane and when a wetting agent is applied to the contents of the pre-incubation chamber fluid transfer occurs.

External cavity tunable compact mid-IR laser

A compact mid-IR laser device utilizes an external cavity to tune the laser. The external cavity may employ a Littrow or Littman cavity arrangement. In the Littrow cavity arrangement, a filter, such as a grating, is rotated to provide wavelength gain medium selectivity. In the Littman cavity arrangement, a reflector is rotated to provide tuning. A quantum cascade laser gain medium provides mid-IR frequencies suitable for use in molecular detection by signature absorption spectra. The compact nature of the device is obtained owing to an efficient heat transfer structure, the use of a small diameter aspheric lens for both the output lens and the external cavity lens and a monolithic assembly structure to hold the optical elements in a fixed position relative to one another. The compact housing size may be approximately 20 cm×20 cm×20 cm or less. Efficient heat transfer is achieved using a thermoelectric cooler TEC combined with a high thermal conductivity heat spreader onto which the quantum cascade laser gain medium is thermally coupled. The heat spreader not only serves to dissipate heat and conduct same to the TEC, but also serves as an optical platform to secure the optical elements within the housing in a fixed relationship relative on one another. The small diameter aspheric output and external cavity lens each may have a diameter of 10 mm or less and each lens is positioned to provided a collimated beam output from the quantum cascade laser gain medium. The housing is hermetically sealed to provide a rugged, light weight portable MIR laser source.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products