Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

14701 results about "CMOS" patented technology

Complementary metal–oxide–semiconductor (CMOS), also known as complementary-symmetry metal–oxide–semiconductor (COS-MOS), is a type of MOSFET (metal–oxide–semiconductor field-effect transistor) fabrication process that uses complementary and symmetrical pairs of p-type and n-type MOSFETs for logic functions. CMOS technology is used for constructing integrated circuits (ICs), including microprocessors, microcontrollers, memory chips (including CMOS BIOS), and other digital logic circuits. CMOS technology is also used for analog circuits such as image sensors (CMOS sensors), data converters, RF circuits (RF CMOS), and highly integrated transceivers for many types of communication.

Methods and apparatus for measuring analytes using large scale FET arrays

Methods and apparatus relating to very large scale FET arrays for analyte measurements. ChemFET (e.g., ISFET) arrays may be fabricated using conventional CMOS processing techniques based on improved FET pixel and array designs that increase measurement sensitivity and accuracy, and at the same time facilitate significantly small pixel sizes and dense arrays. Improved array control techniques provide for rapid data acquisition from large and dense arrays. Such arrays may be employed to detect a presence and / or concentration changes of various analyte types in a wide variety of chemical and / or biological processes. In one example, chemFET arrays facilitate DNA sequencing techniques based on monitoring changes in hydrogen ion concentration (pH), changes in other analyte concentration, and / or binding events associated with chemical processes relating to DNA synthesis.
Owner:LIFE TECH CORP

Semiconductor image sensor module and method of manufacturing the same

A CMOS type semiconductor image sensor module wherein a pixel aperture ratio is improved, chip use efficiency is improved and furthermore, simultaneous shutter operation by all the pixels is made possible, and a method for manufacturing such semiconductor image sensor module are provided. The semiconductor image sensor module is provided by stacking a first semiconductor chip, which has an image sensor wherein a plurality of pixels composed of a photoelectric conversion element and a transistor are arranged, and a second semiconductor chip, which has an A / D converter array. Preferably, the semiconductor image sensor module is provided by stacking a third semiconductor chip having a memory element array. Furthermore, the semiconductor image sensor module is provided by stacking the first semiconductor chip having the image sensor and a fourth semiconductor chip having an analog nonvolatile memory array.
Owner:SONY CORP

Energy harvesting computer device in association with a communication device configured with apparatus for boosting signal reception

ActiveUS20130157729A1Improve consumer electronics hybrid consumer electronics performanceLow densityMaterial nanotechnologyEnergy efficient ICTCellular telephoneCommunication device
Disclosed embodiments comprise an energy harvesting computer device in association with a communication device comprising interactive user interface operatively configured with CMOS multiple antennas on chip for boosting signal receptions and for providing faster data transmission speed. Disclosed embodiment encompasses three modes of communications—the Cell phone, wireless Internet applications, and Global communication and media information. Embodiments provide communication apparatus operable to enhance mobile communication efficiency with touch sensitive display comprising energy harvesting platform in communication with a charging circuit board configured with memories, processors, sensors, and modules. Embodiments further provide a gaming device, a wireless media device configured with touch pads comprising sensors being embedded in silicon substrate and fused in nano-fiber/microfiber material having excellent electrical characteristics. Certain embodiments provide communication apparatus configured for voice enabled applications comprising human voice auditory operable to convert text into voice auditory and/or voice auditory into text applications.
Owner:TABE JOSEPH AKWO

Semiconductor structure and device and methods of forming same using selective epitaxial process

Semiconductor structures, devices, and methods of forming the structures and device are disclosed. Exemplary structures include multi-gate or FinFET structures that can include both n-channel MOS (NMOS) and p-channel MOS (PMOS) devices to form CMOS structures and devices on a substrate. The devices can be formed using selective epitaxy and shallow trench isolation techniques.
Owner:ASM IP HLDG BV

Planar substrate with selected semiconductor crystal orientations formed by localized amorphization and recrystallization of stacked template layers

A method utilizing localized amorphization and recrystallization of stacked template layers is provided for making a planar substrate having semiconductor layers of different crystallographic orientations. Also provided are hybrid-orientation semiconductor substrate structures built with the methods of the invention, as well as such structures integrated with various CMOS circuits comprising at least two semiconductor devices disposed on different surface orientations for enhanced device performance.
Owner:GLOBALFOUNDRIES INC

Semiconductor structure and device and methods of forming same using selective epitaxial process

Semiconductor structures, devices, and methods of forming the structures and device are disclosed. Exemplary structures include multi-gate or FinFET structures that can include both re-channel MOS (NMOS) and p-channel MOS (PMOS) devices to form CMOS structures and devices on a substrate. The devices can be formed using selective epitaxy and shallow trench isolation techniques.
Owner:ASM IP HLDG BV

Nanopore sequencing devices and methods

The invention relates to devices and methods for nanopore sequencing. The invention includes arrays of nanopores having incorporated electronic circuits, for example, in CMOS. In some cases, the arrays of nanopores comprise resistive openings for isolating the electronic signals for improved sequencing. Methods for controlling translocation of through the nanopore are disclosed.
Owner:PACIFIC BIOSCIENCES

Sequential Selective Epitaxial Growth

By forming MOSFETs on a substrate having pre-existing ridges of semiconductor material (i.e., a “corrugated substrate”), the resolution limitations associated with conventional semiconductor manufacturing processes can be overcome, and high-performance, low-power transistors can be reliably and repeatably produced. Forming a corrugated substrate prior to actual device formation allows the ridges on the corrugated substrate to be created using high precision techniques that are not ordinarily suitable for device production. MOSFETs that subsequently incorporate the high-precision ridges into their channel regions will typically exhibit much more precise and less variable performance than similar MOSFETs formed using optical lithography-based techniques that cannot provide the same degree of patterning accuracy. A multi step epitaxial process can be used to extend the ridges with different dopant types, high mobility semiconductor, and or advanced multi-layer strutures. For CMOS integrated circuits a capping layer is formed over the a first region. Epitaxial layers are formed in a second region. Then the capping layer is removed from the first region and a capping layer is formed over the second region. Epitaxial layers can than be formed in the first region.
Owner:SYNOPSYS INC

Penetrating endoscope and endoscopic surgical instrument with CMOS image sensor and display

A penetrating endoscope provides visualization of organ or tissue structures or foreign objects in a body. The penetrating endoscope includes an elongate penetrating member, a complementary metal dioxide semiconductor (CMOS) image sensor and an objective lens. The CMOS image sensor is substantially planar and includes a plurality of pixels with a pixel signal processing circuit for generating a color image ready signal. The CMOS image sensor converts image light energy into electrical color image ready signal energy for transmission out of the body. The color image ready signal is viewed on a color image display. The CMOS image sensor is carried on the elongate penetrating member adjacent a distal end of the elongate penetrating member. The objective lens is also carried on the distal end of the elongate penetrating member on an optical axis and focuses an image corresponding to an endoscope field of view at an image plane intersecting the optical axis. The CMOS image sensor is mounted with the CMOS image sensor pixels disposed substantially in the image plane and on the optical axis. The penetrating endoscope may include end effectors such as cutters and forceps.
Owner:YOON INBAE

Vertical sub-micron CMOS transistors on (110), (111), (311), (511), and higher order surfaces of bulk, SOI and thin film structures and method of forming same

A method for forming NMOS and PMOS transistors that includes cutting a substrate along a higher order orientation and fabricating deep sub-micron NMOS and PMOS transistors on the vertical surfaces thereof. The complementary NMOS and PMOS transistors form a CMOS transistor pair. The transistors are preferably used in structures such as memory circuits, e.g., DRAMs, which are, in turn, used in a processor-based system. Ideally, the deep sub-micron NMOS and PMOS transistors are operated in velocity saturation for optimal switching operation.
Owner:APTINA IMAGING CORP

High mobility heterojunction complementary field effect transistors and methods thereof

A structure, and method of fabrication, for high performance field effect devices is disclosed. The MOS structures include a crystalline Si body of one conductivity type, a strained SiGe layer epitaxially grown on the Si body serving as a buried channel for holes, a Si layer epitaxially grown on the SiGe layer serving as a surface channel for electrons, and a source and a drain containing an epitaxially deposited, strained SiGe of opposing conductivity type than the Si body. The SiGe source / drain forms a heterojunction and a metallurgical junction with the Si body that coincide with each other with a tolerance of less than about 10 nm, and preferably less than about 5 nm. The heterostructure source / drain is instrumental in reducing short channel effects. These structures are especially advantageous for PMOS due to increased hole mobility in the compressively strained SiGe channel. Representative embodiments include CMOS structures on bulk and on SOI.
Owner:GLOBALFOUNDRIES US INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products