Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

68 results about "Drain-induced barrier lowering" patented technology

Drain-induced barrier lowering (DIBL) is a short-channel effect in MOSFETs referring originally to a reduction of threshold voltage of the transistor at higher drain voltages. In a classic planar field-effect transistor with a long channel, the bottleneck in channel formation occurs far enough from the drain contact that it is electrostatically shielded from the drain by the combination of the substrate and gate, and so classically the threshold voltage was independent of drain voltage.

Nano-wire field effect transistor

The invention discloses a nano-wire field effect transistor comprising a gate electrode, a source region, a drain region, a central region and a gate dielectric layer. The central region is in the core-shell structures which are coaxial; the gate dielectric layer fully surrounds the central region; the gate electrode fully surrounds the gate dielectric layer; the source region and the drain region are respectively arranged on two sides of the central region; the core structure of the central region is made from insulating material, and the shell structure of the central region is made from semiconductor material; the doping type and the doping concentration of the semiconductor material of the shell structure of the central region are adjustable; the lengths of both the core structure and the shell structure and the radii of both the core structure and the shell structure are adjustable; and the materials of the gate dielectric layer, the gate electrode, the source region and the drain region are adjustable. Due to the adoption of the insulating core structure, the off-current of the traditional nano-wire transistor can be reduced effectively, and the current on-off ratio of the devices can be increased. The threshold voltage shifting and the drain induced barrier lowering of the nano-wire field effect transistor are less affected by the short channel effect, and the size reducing performance of the nano-wire field effect transistor is more excellent.
Owner:SEMICONDUCTOR MANUFACTURING INTERNATIONAL (BEIJING) CORP +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products