Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

32 results about "Reverse short-channel effect" patented technology

In MOSFETs, reverse short-channel effect (RSCE) is an increase of threshold voltage with decreasing channel length; this is the opposite of the usual short-channel effect. The difference comes from changes in doping profiles used in modern small device manufacturing.

Method for manufacturing semiconductor device layer

The invention discloses a method for manufacturing a semiconductor device layer. The method comprises the following steps of: after a well is formed on a substrate of a semiconductor device, forming an isolation shallow trench, and forming a grid on the substrate of the semiconductor device; performing ion implantation of carbon impurity on the grid and the substrate of the semiconductor device; after the surface of the grid and the surface of the substrate of the semiconductor device are re-oxidized, performing light dope on the grid and the substrate of the semiconductor device to form a shallow junction on the substrate of the semiconductor device; forming a nitrogen oxide side wall of the grid, doping the grid and the substrate of the semiconductor device, and performing deposition on the semiconductor device to form a drain and a source; and depositing metals on the surface of the grid and the semiconductor substrate by adopting a self-alignment silicide method to form metalized silicon layers, then performing quick annealing treatment, and etching the un-reacted metals. The method can effectively reduce the transient enhanced diffusion (TED) generated in the re-oxidation process of the grid so as to remarkably prevent the short trench of the semiconductor device from generating short channel effect (SCE) and reverse short channel effect (RSCE).
Owner:SEMICON MFG INT (SHANGHAI) CORP

Highly integrated high mobility source-drain gate-assisted junction-free transistor

The invention relates to a high-integration, high-mobility source-drain-gate assisted junction-free transistor, which adopts two independently controlled gate electrodes, such as a source-drain control gate electrode and a gate electrode, so that the device can be guaranteed at a low doping concentration. High mobility can be achieved in the channel, avoiding the decline of device mobility and stability caused by the enhancement of random scattering effect under high doping concentration, and at the same time, a lower source can be obtained through the independent control of the source-drain control gate electrode and the gate electrode. Leakage resistance, thus effectively solving the contradiction between the increase of the source-drain resistance caused by the low doping concentration of the channel of ordinary junctionless transistors, and the high doping concentration will lead to the decrease of device mobility and stability. In addition, by adopting the groove-shaped channel design, compared with the ordinary planar structure, the effective channel length is significantly increased without increasing the additional chip area to reduce the short channel effect of the device at the deep nanoscale, so it is suitable for Promote apps.
Owner:SHENYANG POLYTECHNIC UNIV

Sub-threshold digital circuit time sequence optimization method and system

The invention discloses a sub-threshold digital circuit time sequence optimization method and system. The method comprises the following steps: firstly, determining a logic unit circuit capable of improving the performance by utilizing a reverse short channel effect; performing time sequence analysis on a given integrated circuit to obtain all signal paths which do not meet the time sequence requirement; then determining a plurality of main delay units capable of improving the performance by utilizing a reverse short channel effect in each signal path which does not meet the time sequence requirement; and finally, increasing the gate length of the device of the main time delay unit by using a reverse short channel effect according to a preset time sequence constraint condition to carry outadjustment, and adjusting the gate length size to optimize the time sequence of the sub-threshold digital circuit. According to the invention, the gate length of a device of a main time delay unit isincreased by using a reverse short channel effect, so that time sequence optimization is realized, the circuit performance of a sub-threshold digital circuit is improved, and the time delay time of the unit is reduced; and meanwhile, the consistency of unit delay is improved by increasing the area, so that the robustness of the circuit is enhanced.
Owner:INST OF MICROELECTRONICS CHINESE ACAD OF SCI
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products