Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

11013 results about "Bit line" patented technology

Method for fabricating programmable memory array structures incorporating series-connected transistor strings

A three-dimensional flash memory array incorporates thin film transistors having a charge storage dielectric arranged in series-connected NAND strings to achieve a 4F2 memory cell layout. The memory array may be programmed and erased using only tunneling currents, and no leakage paths are formed through non-selected memory cells. Each NAND string includes two block select devices for respectively coupling one end of the NAND string to a global bit line, and the other end to a shared bias node. Pairs of NAND strings within a block share the same global bit line. The memory cells are preferably depletion mode SONOS devices, as are the block select devices. The memory cells may be programmed to a near depletion threshold voltage, and the block select devices are maintained in a programmed state having a near depletion mode threshold voltage. NAND strings on more than one layer may be connected to global bit lines on a single layer. By interleaving the NAND strings on each memory level and using two shared bias nodes per block, very little additional overhead is required for the switch devices at each end of the NAND strings. The NAND strings on different memory levels are preferably connected together by way of vertical stacked vias, each preferably connecting to more than one memory level. Each memory level may be produced with less than three masks per level.
Owner:SANDISK TECH LLC

Process for making and programming and operating a dual-bit multi-level ballistic MONOS memory

A fast low voltage ballistic program, ultra-short channel, ultra-high density, dual-bit multi-level flash memory is described with a two or three polysilicon split gate side wall process. The structure and operation of this invention is enabled by a twin MONOS cell structure having an ultra-short control gate channel of less than 40nm, with ballistic injection which provides high electron injection efficiency and very fast program at low program voltages of 3~5V. The cell structure is realized by (i) placing side wall control gates over a composite of Oxide-Nitride-Oxide (ONO) on both sides of the word gate, and (ii) forming the control gates and bit diffusion by self-alignment and sharing the control gates and bit diffusions between memory cells for high density. Key elements used in this process are: 1) Disposable side wall process to fabricate the ultra short channel and the side wall control gate with or without a step structure, and 2) Self-aligned definition of the control gate over the storage nitride and the bit line diffusion, which also runs in the same direction as the control gate. The features of fast program, low voltage, ultra-high density, dual-bit, multi-level MONOS NVRAM of the present invention include: 1) Electron memory storage in nitride regions within an ONO layer underlying the control gates, 2) high density dual-bit cell in which there are two nitride memory storage elements per cell, 3) high density dual-bit cell can store multi-levels in each of the nitride regions, 4) low current program controlled by the word gate and control gate, 5) fast, low voltage program by ballistic injection utilizing the controllable ultra-short channel MONOS, and 6) side wall control poly gates to program and read multi-levels while masking out memory storage state effects of the unselected adjacent nitride regions and memory cells. The ballistic MONOS memory cell is arranged in the following array: each memory cell contains two nitride regions for one word gate, and ½ a source diffusion and ½ a bit diffusion. Control gates can be defined separately or shared together over the same diffusion. Diffusions are shared between cells and run in parallel to the side wall control gates, and perpendicular to the word line.
Owner:HALO LSI INC

Planar capacitor memory cell and its applications

InactiveUS7209384B1Less complicated to fabricateImprove performanceTransistorSolid-state devicesHemt circuitsEngineering
A capacitor memory is realized, wherein a capacitor stores data and a diode controls to store data “1” or “0”. Diode has four terminals wherein first terminal serves as word line, second terminal serves as storage node, third terminal is floating, and fourth terminal serves as bit line, wherein back channel effect is suppressed adding additional ions in the bottom side of third terminal or applying negative voltage in the well or substrate. A capacitor plate couples to second terminal, which plate has no coupling region to first, third and fourth terminal. With no coupling, the inversion layer of plate in the storage node is isolated from the adjacent nodes. In doing so, the plate can swing ground level to positive supply level to write. As a result, no negative generator is required for controlling plate. Word line and bit line keep ground level during standby, and rise to supply level for read or write operation. In this manner, no holding current is required during standby, and operating current is dramatically reduced with no negative generator. Write has a sequence to clear the state of cell before writing to store data regardless of previous state. Refresh cycle is periodically asserted to sustain data. The present invention can be applied for destructive read, or for nondestructive read adding pull-down device to bit line. The height of cell is almost same as control circuit on the bulk or SOI wafer.
Owner:KIM JUHAN

Process for making and programming and operating a dual-bit multi-level ballistic flash memory

An fast program, ultra-high density, dual-bit, multi-level flash memory process, which can be applied to a ballistic step split gate side wall transistor, or to a ballistic planar split gate side wall transistor, which enables program operation by low voltage requirement on the floating gate during program is described. Two side wall floating gates are paired with a single word line select gate, and word lines are arranged to be perpendicular both the bit lines and control gate lines. Two adjacent memory cells on the same word line do not require an isolation region. Also, the isolation region between adjacent memory cells sharing the same bitline is defined by the minimum lithography feature, utilizing a self align fill technique. Adjacent memory cells on the same word line share bitline diffusion as well as a third poly control gate. Control gates allow program and read access to the individual floating gate. In addition to the dual-bit nature of the cell, density can be even further improved by multi-level storage. In one embodiment, the dual multi-level structure is applied to the ballistic step split gate side wall transistor. In a second embodiment, the dual multi-level structure is applied to the ballistic planar split gate side wall transistor. Both types of ballistic transistors provide fast, low voltage programming. The control gates are used to override or suppress the various threshold voltages on associated floating gates, in order to program to and read from individual floating gates. The targets for this non-volatile memory array are to provide the capabilities of high speed, low voltage programming (band width) and high density storage.
Owner:HALO LSI DESIGN & DEVICE TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products