Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

446 results about "Refresh cycle" patented technology

The server refresh cycle is the length of time that normally passes between installations of new servers and related hardware in a data center. Traditionally, refresh cycles have averaged around five years, but they have accelerated during the last decade.

Planar capacitor memory cell and its applications

InactiveUS7209384B1Less complicated to fabricateImprove performanceTransistorSolid-state devicesHemt circuitsEngineering
A capacitor memory is realized, wherein a capacitor stores data and a diode controls to store data “1” or “0”. Diode has four terminals wherein first terminal serves as word line, second terminal serves as storage node, third terminal is floating, and fourth terminal serves as bit line, wherein back channel effect is suppressed adding additional ions in the bottom side of third terminal or applying negative voltage in the well or substrate. A capacitor plate couples to second terminal, which plate has no coupling region to first, third and fourth terminal. With no coupling, the inversion layer of plate in the storage node is isolated from the adjacent nodes. In doing so, the plate can swing ground level to positive supply level to write. As a result, no negative generator is required for controlling plate. Word line and bit line keep ground level during standby, and rise to supply level for read or write operation. In this manner, no holding current is required during standby, and operating current is dramatically reduced with no negative generator. Write has a sequence to clear the state of cell before writing to store data regardless of previous state. Refresh cycle is periodically asserted to sustain data. The present invention can be applied for destructive read, or for nondestructive read adding pull-down device to bit line. The height of cell is almost same as control circuit on the bulk or SOI wafer.
Owner:KIM JUHAN

Refresh period control apparatus and method, and computer

InactiveUS6199139B1Highly effective error correction functionLow costEnergy efficient ICTCode conversionComputer hardwareRefresh cycle
The present invention provides a memory system that optimizes, during a sleep mode, a refresh period for a memory device, such as DRAM, which stores meaningful data and for which a refresh operation is required to prevent the loss of data. More particularly, the present invention is directed to an apparatus for controlling, in a sleep mode, a refresh period for a memory device 13 that requires a refresh operation, comprises: an encoding circuit 3 for encoding data to obtain code that can be used to correct errors equal to or more than dual errors; a decoding circuit 5 for correcting errors and for decoding the corrected code; and a refresh period controller 7 for, following a transition to the sleep mode, changing a refresh period by using data, which is stored in the memory device 13 and encoded by the encoding circuit 3, until the refresh period becomes longest in a condition where there is no error that can not be corrected by the decoding circuit 5 and the number of correctable errors does not exceed a predetermined count, and where a refresh execution circuit 15 for performing the refresh operation for the memory device can deal with the changed refresh period, and for, following the first end of the change of the refresh period, setting the refresh execution circuit 15 so that the refresh of the memory device 13 is performed at the refresh period at the first end of the change of the refresh period.
Owner:IBM CORP

Low-power band-gap reference and temperature sensor circuit

A combined low-voltage, low-power band-gap reference and temperature sensor circuit is provided for providing a band-gap reference parameter and for sensing the temperature of a chip, such as an eDRAM memory unit or CPU chip, using the band-gap reference parameter. The combined sensor circuit is insensitive to supply voltage and a variation in the chip temperature. The power consumption of both circuits, i.e., the band-gap reference and the temperature sensor circuits, encompassing the combined sensor circuit is less than one μW. The combined sensor circuit can be used to monitor local or global chip temperature. The result can be used to (1) regulate DRAM array refresh cycle time, e.g., the higher the temperature, the shorter the refresh cycle time, (2) to activate an on-chip or off-chip cooling or heating device to regulate the chip temperature, (3) to adjust internally generated voltage level, and (4) to adjust the CPU (or microprocessor) clock rate, i.e., frequency, so that the chip will not overheat. The combined band-gap reference and temperature sensor circuit of the present invention can be implemented within battery-operated devices having at least one memory unit. The low-power circuits of the sensor circuit extend battery lifetime and data retention time of the cells of the at least one memory unit.
Owner:GLOBALFOUNDRIES INC

Self-initiated self-refresh mode for memory modules

A method and apparatus for selectively causing each bank of a number of banks of DRAMs of a DRAM memory card to enter into the self-refresh mode without affecting the operation of any other bank. In the computer system incorporating the SIMM or DIMM type DRAM cards, each bank of memory on each card has a RAS signal specific to that specific bank. One or more CAS signals are supplied across all of the memory banks, on all cards. Thus, each memory bank is accessed separately for a read/write operation by the RAS becoming active before the CAS becomes active; and refresh takes place by the CAS signal becoming active before the RAS signal becomes active. The number of clock cycles or refresh cycles between active RAS signals to each memory bank are counted. If RAS does not become active for N clock or refresh cycles, a signal is provided within each respective memory bank and that memory bank will immediately, or preferably after M additional clock or refresh cycles enter self-refresh mode without affecting the operation of any other bank. At the same time, the memory controller counts cycles of RAS inactivity for each DRAM bank it controls. A signal is also provided to a register to require a double read/write on the next active read/write cycle to that bank, for reactivating that bank from the self-refresh mode when RAS signal specific to that bank becomes active while CAS is inactive.
Owner:MARVELL ASIA PTE LTD

Gain cell type non-volatile memory having charge accumulating region charged or discharged by channel current from a thin film channel path

A semiconductor memory element subject to a threshold voltage controlling method other than those based on low leak currents or on the implantation of impurities. Such semiconductor elements are used to form semiconductor memory elements that are employed in scaled-down structures and are conducive to high-speed write operations thanks to a sufficiently prolonged refresh cycle. These semiconductor memory elements are in turn used to constitute a semiconductor memory device. A very thin semiconductor film is used as channels so that leak currents are reduced by the quantum-mechanical containment effect in the direction of film thickness. An amount of electrical charges in each charge accumulating region is used to change conductance between a source and a drain region of each read transistor structure, the conductance change being utilized for data storage. A channel of a transistor for electrically charging or discharging each charge accumulating region is made of a semiconductor film 5 nm thick at most. The arrangement affords both high-speed data write performance and an extended data retention time. The invention provides a high-speed, power-saving semiconductor device of high integration particularly advantageous for producing a small-scale system of low-power dissipation.
Owner:HITACHI LTD

Bank address mapping according to bank retention time in dynamic random access memories

A system and method for refreshing data in a dynamic random access memory (“DRAM”) is provided, where the system includes a data memory having a plurality of memory banks, a map memory in signal communication with the data memory for translating an internal address of each of the plurality of memory banks into a corresponding external address, a map comparator in signal communication with the map memory for selectively enabling a memory bank in accordance with its external address, a refresh address generator in signal communication with the map comparator for selectively refreshing the enabled memory bank in accordance with its external address, and a refresh counter in signal communication with the refresh address generator for signaling a refresh in accordance with the maximum required refresh time of the enabled memory bank; and where the corresponding method includes determining the maximum required refresh period for each of the memory banks, respectively, prioritizing the memory banks in accordance with their respective refresh periods, utilizing the memory banks in order of their respective prioritizations, selectively disabling at least one of the memory banks in reverse-order of their respective prioritizations, and refreshing only the remaining non-disabled memory banks.
Owner:POLARIS INNOVATIONS LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products