Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2511 results about "Memory bank" patented technology

A memory bank is a logical unit of storage in electronics, which is hardware-dependent. In a computer, the memory bank may be determined by the memory controller along with physical organization of the hardware memory slots. In a typical synchronous dynamic random-access memory (SDRAM) or double data rate synchronous dynamic random-access memory (DDR SDRAM), a bank consists of multiple rows and columns of storage units, and is usually spread out across several chips. In a single read or write operation, only one bank is accessed, therefore the number of bits in a column or a row, per bank and per chip, equals the memory bus width in bits (single channel). The size of a bank is further determined by the number of bits in a column and a row, per chip, multiplied by the number of chips in a bank.

High speed memory control and I/O processor system

An input/output processor for speeding the input/output and memory access operations for a processor is presented. The key idea of an input/output processor is to functionally divide input/output and memory access operations tasks into a compute intensive part that is handled by the processor and an I/O or memory intensive part that is then handled by the input/output processor. An input/output processor is designed by analyzing common input/output and memory access patterns and implementing methods tailored to efficiently handle those commonly occurring patterns. One technique that an input/output processor may use is to divide memory tasks into high frequency or high-availability components and low frequency or low-availability components. After dividing a memory task in such a manner, the input/output processor then uses high-speed memory (such as SRAM) to store the high frequency and high-availability components and a slower-speed memory (such as commodity DRAM) to store the low frequency and low-availability components. Another technique used by the input/output processor is to allocate memory in such a manner that all memory bank conflicts are eliminated. By eliminating any possible memory bank conflicts, the maximum random access performance of DRAM memory technology can be achieved.
Owner:CISCO TECH INC

Multimedia communications system and method for providing audio on demand to subscribers

An audio-on-demand communication system provides real-time playback of audio data transferred via telephone lines or other communication links. One or more audio servers include memory banks which store compressed audio data. At the request of a user at a subscriber PC, an audio server transmits the compressed audio data over the communication link to the subscriber PC. The subscriber PC receives and decompresses the transmitted audio data in less than real-time using only the processing power of the CPU within the subscriber PC. According to one aspect of the present invention, high quality audio data compressed according to lossless compression techniques is transmitted together with normal quality audio data. According to another aspect of the present invention, metadata, or extra data, such as text, captions, still images, etc., is transmitted with audio data and is simultaneously displayed with corresponding audio data. The audio-on-demand system also provides a table of contents indicating significant divisions in the audio clip to be played and allows the user immediate access to audio data at the listed divisions. According to a further aspect of the present invention, servers and subscriber PCs are dynamically allocated based upon geographic location to provide the highest possible quality in the communication link.
Owner:INTEL CORP

Audio-on-demand communication system

An audio-on-demand communication system provides real-time playback of audio data transferred via telephone lines or other communication links. One or more audio servers include memory banks which store compressed audio data. At the request of a user at a subscriber PC, an audio server transmits the compressed audio data over the communication link to the subscriber PC. The subscriber PC receives and decompresses the transmitted audio data in less than real-time using only the processing power of the CPU within the subscriber PC. According to one aspect of the present invention, high quality audio data compressed according to lossless compression techniques is transmitted together with normal quality audio data. According to another aspect of the present invention, metadata, or extra data, such as text, captions, still images, etc., is transmitted with audio data and is simultaneously displayed with corresponding audio data. The audio-on-demand system also provides a table of contents indicating significant divisions in the audio clip to be played and allows the user immediate access to audio data at the listed divisions. According to a further aspect of the present invention, servers and subscriber PCs are dynamically allocated based upon geographic location to provide the highest possible quality in the communication link.
Owner:INTEL CORP

High speed memory and input/output processor subsystem for efficiently allocating and using high-speed memory and slower-speed memory

An input / output processor for speeding the input / output and memory access operations for a processor is presented. The key idea of an input / output processor is to functionally divide input / output and memory access operations tasks into a compute intensive part that is handled by the processor and an I / O or memory intensive part that is then handled by the input / output processor. An input / output processor is designed by analyzing common input / output and memory access patterns and implementing methods tailored to efficiently handle those commonly occurring patterns. One technique that an input / output processor may use is to divide memory tasks into high frequency or high-availability components and low frequency or low-availability components. After dividing a memory task in such a manner, the input / output processor then uses high-speed memory (such as SRAM) to store the high frequency and high-availability components and a slower-speed memory (such as commodity DRAM) to store the low frequency and low-availability components. Another technique used by the input / output processor is to allocate memory in such a manner that all memory bank conflicts are eliminated. By eliminating any possible memory bank conflicts, the maximum random access performance of DRAM memory technology can be achieved.
Owner:CISCO TECH INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products