Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1091 results about "Memory operation" patented technology

Memory operations per second or MOPS is a metric for an expression of the performance capacity of semiconductor memory. It can also be used to determine the efficiency of RAM in the Windows operating environment.

Erase block management

An improved Flash memory device with a distributed erase block management (EBM) scheme is detailed that enhances operation and helps minimize write fatigue of the floating gate memory cells of the Flash memory device. In the prior art, erase block management of a Flash memory device, which provides logical sector to physical sector mapping and provides a virtual rewriteable interface for the host, requires that erase block management data be kept in specialized EBM data tables to keep the state of the Flash memory device in case of loss of power. This placement of EBM data in a separate erase block location from the user data slows the Flash memory operation by requiring up to two writes and/or block erasures for every update of the user data. Additionally, one of the goals of the EBM control is to minimize write fatigue of the non-volatile floating gate memory cells of the Flash memory device erase blocks by re-mapping and distributing heavily rewritten user data sectors in a process called load leveling so that no one erase block gets overused too quickly and reduce the expected lifespan of the Flash memory device. The EBM data structures, however, are some of the most heavily rewritten non-volatile floating gate memory cells in the device and thus, while helping to reduce write fatigue in the Flash memory device, are some of the data structures most susceptible to the process of fatigue. The Flash memory device of the invention combines the EBM data in a user data erase block by placing it in an EBM data field of the control data section of the erase block sectors. Therefore distributing the EBM data within the Flash memory erase block structure. This allows the Flash memory to update and/or erase the user data and the EBM data in a single operation, to reduce overhead and speed operation. The Flash memory also reduces the process of EBM data structure write fatigue by allowing the EBM data fields to be load leveled by rotating them with the erase blocks they describe.
Owner:MICRON TECH INC

Processor, multiprocessor system and method for speculatively executing memory operations using memory target addresses of the memory operations to index into a speculative execution result history storage means to predict the outcome of the memory operation

When a processor executes a memory operation instruction by means of data dependence speculative execution, a speculative execution result history table which stores history information concerning success/failure results of the speculative execution of memory operation instructions of the past is referred to and thereby whether the speculative execution will succeed or fail is predicted. In the prediction, the target address of the memory operation instruction is converted by a hash function circuit into an entry number of the speculative execution result history table (allowing the existence of aliases), and an entry of the table designated by the entry number is referred to. If the prediction is “success”, the memory operation instruction is executed in out-of-order execution speculatively (with regard to data dependence relationship between the instructions). If the prediction is “failure”, the speculative execution is canceled and the memory operation instruction is executed later in the program order non-speculatively. Whether the speculative execution of the memory operation instructions has succeeded or failed is judged by detecting the data dependence relationship between the memory operation instructions, and the speculative execution result history table is updated taking the judgment into account.
Owner:NEC CORP

Method, system and computer program product for managing memory in a non-uniform memory access system

A memory management and control system that is selectable at the application level by an application programmer is provided. The memory management and control system is based on the use of policy modules. Policy modules are used to specify and control different aspects of memory operations in NUMA computer systems, including how memory is managed for processes running in NUMA computer systems. Preferably, each policy module comprises a plurality of methods that are used to control a variety of memory operations. Such memory operations typically include initial memory placement, memory page size, a migration policy, a replication policy and a paging policy. One method typically contained in policy modules is an initial placement policy. Placement policies may be based on two abstractions of physical memory nodes. These two abstractions are referred to herein as "Memory Locality Domains" (MLDs) and "Memory Locality Domain Sets" (MLDSETs). By specifying MLDs and MLDSETs, rather than physical memory nodes, application programs can be executed on different computer systems regardless of the particular node configuration and physical node topology employed by the system. Further, such application programs can be run on different machines without the need for code modification and/or re-compiling.
Owner:HEWLETT-PACKARD ENTERPRISE DEV LP +1

High reliability memory module with a fault tolerant address and command bus

A high reliability dual inline memory module with a fault tolerant address and command bus for use in a server. The memory module is a card approximately 151.35 mm or 5.97 inches long provided with about a plurality of contacts of which some are redundant, a plurality of DRAMs, a phase lock loop, a 2 or 32K bit serial EE PROM and a 28 bit and a 1 to 2 register having error correction code (ECC), parity checking, a multi-byte fault reporting circuitry for reading via an independent bus, and real time error lines for determining and reporting both correctable errors and uncorrectable error conditions coupled to the server's memory interface chip and memory controller or processor such that the memory controller sends address and command information to the register via address / command lines together with check bits for error correction purposes to the ECC / Parity register. By providing the module with a fault tolerant address and command bus fault-tolerance and self-healing aspects necessary for autonomic computing systems compatible with industry-standards is realized. The memory module corrects single bit errors on the command or address bus and permits continuous memory operation independent of the existence of these errors and can determine any double bit error condition. The redundant contacts on the module prevents what would otherwise be single points of failure.
Owner:IBM CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products