Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

794 results about "Single level" patented technology

Dynamic slc/mlc blocks allocations for non-volatile memory

Apparatus and methods are disclosed, such as those that provide dynamic block allocations in NAND flash memory between single-level cells (SLC) and multi-level cells (MLC) based on characteristics. In one embodiment, a memory controller dynamically switches between programming and / or reprogramming blocks between SLC mode and MLC mode based on the amount of memory available for use. When memory usage is low, SLC mode is used. When memory usage is high, MLC mode is used. Dynamic block allocation allows a memory controller to obtain the performance and reliability benefits of SLC mode while retaining the space saving benefits of MLC mode.
Owner:ROUND ROCK RES LLC

Method for managing device and solid state disk drive utilizing the same

A solid state disk drive is provided. The solid state disk drive includes a multiple level cell (MLC) memory device and a controller. The MLC memory device includes memory blocks each comprising memory cells capable of storing more than a single bit of data per cell. The controller transforms at least one memory block into a single level cell (SLC)-like memory block, and accesses the memory block in an SLC manner.
Owner:MEDIATEK INC

SLC-MLC Wear Balancing

A method and system for SLC-MLC Wear Balancing in a flash memory device is disclosed. The flash memory device includes a single level cell (SLC) portion and a multi-level cell (MLC) portion. The age of the SLC portion and the MLC portion may differ, leading potentially to one portion wearing out before the other. In order to avoid this, a controller is configured to receive an age indicator from one or both of the SLC portion and the MLC portion, determine, based on the age indicator, whether to modify operation of the SLC portion and / or the MLC portion, and in response to determining to modifying operation, modify the operation of the at least one of the SLC portion or the MLC portion. The modification of the operation may thus balance wear between the SLC and MLC portions, thereby potentially extending the life of the flash memory device.
Owner:SANDISK TECH LLC

Spinous process stabilization device and method

A fixation device to immobilize a spinal motion segment and promote posterior fusion, used as stand-alone instrumentation or as an adjunct to an anterior approach. The device functions as a multi-level fusion system including modular single-level implementations. At a single-level the implant includes a pair of plates spanning two adjacent vertebrae with embedding teeth on the medially oriented surfaces directed into the spinous processes or laminae. The complementary plates at a single-level are connected via a cross-post with a hemi-spherical base and cylindrical shaft passed through the interspinous process gap and ratcheted into an expandable collar. The expandable collar's spherical profile contained within the opposing plate allows for the ratcheting mechanism to be correctly engaged creating a uni-directional lock securing the implant to the spine when a medially directed force is applied to both complementary plates using a specially designed compression tool. The freedom of rotational motion of both the cross-post and collar enables the complementary plates to be connected at a range of angles in the axial and coronal planes accommodating varying morphologies of the posterior elements in the cervical, thoracic and lumbar spine. To achieve multi-level fusion the single-level implementation can be connected in series using an interlocking mechanism fixed by a set-screw.
Owner:GINSBERG HOWARD JOESEPH +2

Nonvolatile memory devices including multiple user-selectable program modes and related methods of operation

A memory device includes a flash memory, a memory controller, and an MLC mode selector. The flash memory includes at least one memory cell configured to store multi-bit data therein. The MLC mode selector is configured to generate a mode selection signal indicating whether to store single-bit data or multi-bit data in the memory cell responsive to a user selection. The memory controller is configured to operate the flash memory in a single-level cell (SLC) program mode to store the single-bit data or a multi-level cell (MLC) program mode to store the multi-bit data based on the mode selection signal from the MLC mode selector. The memory device may be configured to store program mode information for the memory cell indicating whether the single-bit data or the multi-bit data is stored therein. Related systems and methods of operation are also discussed.
Owner:SAMSUNG ELECTRONICS CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products