Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

5089 results about "Memory cell" patented technology

The memory cell is the fundamental building block of computer memory. The memory cell is an electronic circuit that stores one bit of binary information and it must be set to store a logic 1 (high voltage level) and reset to store a logic 0 (low voltage level). Its value is maintained/stored until it is changed by the set/reset process. The value in the memory cell can be accessed by reading it.

Method of operating semiconductor memory device with floating body transistor using silicon controlled rectifier principle

Methods of operating semiconductor memory devices with floating body transistors, using a silicon controlled rectifier principle are provided, as are semiconductor memory devices for performing such operations. A method of maintaining the data state of a semiconductor dynamic random access memory cell is provided, wherein the memory cell comprises a substrate being made of a material having a first conductivity type selected from p-type conductivity type and n-type conductivity type; a first region having a second conductivity type selected from the p-type and n-type conductivity types, the second conductivity type being different from the first conductivity type; a second region having the second conductivity type, the second region being spaced apart from the first region; a buried layer in the substrate below the first and second regions, spaced apart from the first and second regions and having the second conductivity type; a body region formed between the first and second regions and the buried layer, the body region having the first conductivity type; and a gate positioned between the first and second regions and adjacent the body region. The memory cell is configured to store a first data state which corresponds to a first charge in the body region in a first configuration, and a second data state which corresponds to a second charge in the body region in a second configuration. The method includes: providing the memory cell storing one of the first and second data states; and applying a positive voltage to a substrate terminal connected to the substrate beneath the buried layer, wherein when the body region is in the first state, the body region turns on a silicon controlled rectifier device of the cell and current flows through the device to maintain configuration of the memory cell in the first memory state, and wherein when the memory cell is in the second state, the body region does not turn on the silicon controlled rectifier device, current does not flow, and a blocking operation results, causing the body to maintain the second memory state.
Owner:ZENO SEMICON

Bipolar reading technique for a memory cell having an electrically floating body transistor

A technique of sampling, sensing, reading and/or determining the data state of a memory cell of a memory cell array (for example, a memory cell array having a plurality of memory cells which consist of an electrically floating body transistor). In one embodiment, the present inventions are directed to a memory cell, having an electrically floating body transistor, and/or a technique of reading the data state in such a memory cell. In this regard, the present inventions employ the intrinsic bipolar transistor current to read and/or determine the data state of the electrically floating body memory cell (for example, whether the electrically floating body memory cell is programmed in a State “0” and State “1”). During the read operation, the data state is determined primarily by or sensed substantially using the bipolar current responsive to the read control signals and significantly less by the interface channel current component, which is negligible relatively to the bipolar component. The bipolar transistor current may be very sensitive to the floating body potential due to the high gain of the intrinsic bipolar transistor. As such, the programming window obtainable with the bipolar reading technique may be considerably higher (for example, up two orders of magnitude higher) than the programming window employing a conventional reading technique (which is based primarily on the interface channel current component.
Owner:MICRON TECH INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products