Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2297 results about "Self alignment" patented technology

Self-Aligning System. a self-adaptive control system in which adaptation to randomly varying conditions is provided by an automatic change in the alignment parameters or by an automatic search for the optimum alignment.

Process for making and programming and operating a dual-bit multi-level ballistic MONOS memory

A fast low voltage ballistic program, ultra-short channel, ultra-high density, dual-bit multi-level flash memory is described with a two or three polysilicon split gate side wall process. The structure and operation of this invention is enabled by a twin MONOS cell structure having an ultra-short control gate channel of less than 40nm, with ballistic injection which provides high electron injection efficiency and very fast program at low program voltages of 3~5V. The cell structure is realized by (i) placing side wall control gates over a composite of Oxide-Nitride-Oxide (ONO) on both sides of the word gate, and (ii) forming the control gates and bit diffusion by self-alignment and sharing the control gates and bit diffusions between memory cells for high density. Key elements used in this process are: 1) Disposable side wall process to fabricate the ultra short channel and the side wall control gate with or without a step structure, and 2) Self-aligned definition of the control gate over the storage nitride and the bit line diffusion, which also runs in the same direction as the control gate. The features of fast program, low voltage, ultra-high density, dual-bit, multi-level MONOS NVRAM of the present invention include: 1) Electron memory storage in nitride regions within an ONO layer underlying the control gates, 2) high density dual-bit cell in which there are two nitride memory storage elements per cell, 3) high density dual-bit cell can store multi-levels in each of the nitride regions, 4) low current program controlled by the word gate and control gate, 5) fast, low voltage program by ballistic injection utilizing the controllable ultra-short channel MONOS, and 6) side wall control poly gates to program and read multi-levels while masking out memory storage state effects of the unselected adjacent nitride regions and memory cells. The ballistic MONOS memory cell is arranged in the following array: each memory cell contains two nitride regions for one word gate, and ½ a source diffusion and ½ a bit diffusion. Control gates can be defined separately or shared together over the same diffusion. Diffusions are shared between cells and run in parallel to the side wall control gates, and perpendicular to the word line.
Owner:HALO LSI INC

Autocollimation method of carrier aircraft rotating type strapdown inertial navigation system under shaking base

InactiveCN103245360AOvercome the disadvantage of not being able to useHigh precisionNavigation by speed/acceleration measurementsAccelerometerReference vector
The invention discloses an autocollimation method of a carrier aircraft rotating type strapdown inertial navigation system under a shaking base, and belongs to the field of navigation. The autocollimation method comprises the following steps of: firstly obtaining the longitude and latitude of the position of a carrier, secondly collecting output signals of a fiber-optic gyro and a quartz flexible accelerometer in an inertia measurement unit, and then carrying out automatic compensation on a constant error of an inertia device by adopting a double-shaft rotating table rotatory IMU (inertial measurement unit) to form a rotating type strapdown inertial navigation system; and then calculating a rough initial posture array by utilizing gravity acceleration in an inertial coordinate system as a reference vector, establishing a state equation and a measuring equation again of the system, designing a vanishing adaptation Kalman filter to accurately estimate a misalignment angle of the carrier, and correcting a strapdown posture matrix by utilizing the misalignment angle to finish initial alignment and enter a navigation state. The method isolates the influence of shake of a vessel to initial alignment of a carrier aircraft, and dynamic random disturbance in measured noise is restrained through estimating the initial posture array of the system via the vanishing adaptation Kalman filter method, so that rapid autocollimation of the carrier aircraft rotating type strapdown inertial navigation system is realized.
Owner:BEIJING UNIV OF TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products