Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

11365 results about "Inductive charging" patented technology

Inductive charging (also known as wireless charging or cordless charging) is a type of wireless charging that uses an electromagnetic field to transfer energy between two objects using electromagnetic induction, the production of electricity across a magnetic field. Inductive charging is usually done with a charging station or inductive pad. Energy is sent through an inductive coupling to an electrical device, which can then use that energy to charge batteries or run the device. It is the technology that enables smartphone wireless charging, such as the Qi wireless charging standard.

Inductive battery charger

An inductive charging system transfers energy by inductively coupling a source coil on a power source to a receiver coil for a battery charger. Source current may be received in the battery charger and converted for charging a battery pack. A wireless communication arrangement may also provide for authentication of devices that are allowed by the source to be powered or otherwise charged.
Owner:MICROSOFT TECH LICENSING LLC

Wireless power for charging devices

Exemplary embodiments are directed to wireless power. A host device peripheral may comprise a wireless power charging apparatus, which may include transmit circuitry and at least one antenna coupled to the transmit circuitry. The at least one antenna may be configured to wirelessly transmit power within an associated near-field region. Additionally, the host device peripheral may be configured to couple to a host device.
Owner:QUALCOMM INC

Inductively charged battery pack

ActiveUS7375492B2Enabling user convenienceMaximizes flexibility and efficiency and safetyCircuit authenticationVolume/mass flow measurementElectrical batteryEngineering
An inductive charging systems transfers energy by inductively coupling a source coil on a charging source to a receiver coil on a charging portion of a battery pack. The source current is received in the battery pack and converted to direct current for storage in the battery pack cells. Communication between a charging source and the charging portion is provided. A wireless communication arrangement provides for authentication of devices that are allowed by a source to be charged.
Owner:MICROSOFT TECH LICENSING LLC

Wireless charging system

The present invention provides wireless power supply systems that wirelessly supply power to a remote device for rapidly charging a charge storage capacitor, which charges a battery with the power stored in the charge storage capacitor. This allows the remote device to be positioned near the inductive power supply for rapid charging of the charge storage capacitor and allows battery charging to continue even after the remote device is removed from the inductive power supply.
Owner:PHILIPS IP VENTURES BV

Battery with electronic compartment

An electronic containment battery includes a battery section and an electronic section that together form a standard battery form factor that allows insertion into conventional electronic devices. In one example, the electronic section can include Radio Frequency (RF) circuitry that enables electronic operations in the electronic containment battery to be communicated or controlled wirelessly. In another example, the electronic section can include wireless charging circuitry that enables the battery section to be wirelessly charged while the EC battery is inserted into the conventional electronic device. In yet another example, the electronic section can include the RF circuitry and the wireless charging circuitry.
Owner:MONTEREY RES LLC

Battery charging arrangement for unmanned aerial vehicle utilizing the electromagnetic field associated with utility power lines to generate power to inductively charge energy supplies

A method and apparatus for charging energy supplies in an unmanned aerial vehicle (UAV). The present invention relates to a UAV that comprises an inductive charging device that utilizes the electromagnetic field emanated by overhead / utility power lines, to charge the energy supplies. The UAV also includes a releasable latch for holding power lines to allow for the perching of the UAV on power lines during the charging process. The latch and the inductive charging device may be provided on a single device, a battery augmentation trap (BAT). The UAV may be perched in an upright orientation to allow for takeoff after the charging of energy supplies on the power line.
Owner:THE UNITED STATES OF AMERICA AS REPRESENTED BY THE SECRETARY OF THE NAVY

Wireless power from renewable energy

Exemplary embodiments are directed to wireless charging. A charging system may comprise at least one power generation system configured to convert renewable energy to another form of energy and convey the another form of energy. The charging system may further include at least one transmit antenna coupled to the at least one power generation system and configured to receive the another form of energy from the at least one power generation system. Further, the at least one transmit antenna is configured to wirelessly transmit energy to at least one other antenna positioned within an associated coupling-mode region.
Owner:QUALCOMM INC

Wireless charging system with device power compliance

A method of controlling an inductive charging system on those occasions in which the combined power requests of a plurality of secondary devices exceed the power capacity of the power supply. The method includes at least one of (a) powering each device at a level below its requested level, (b) powering each device sequentially, and / or (c) powering each device in a repetitive pattern (e.g. time multiplexing). Also disclosed is a method of controlling an inductive charging system at least partially as a function of information received from the power management unit (PMU) of each secondary device.
Owner:PHILIPS IP VENTURES BV

Apparatus and system for providing wireless charging service

ActiveUS20120268238A1Stable wireless charging serviceEfficiently controlling charging rightCircuit authenticationElectric signal transmission systemsCommunication unitTransmitted power
A wireless charging apparatus and system according to an embodiment of the present invention provides a wireless charging service through authentication so as to efficiently control charging rights with respect to a plurality of electronic devices, which desire to receive the wireless charging service using a shared wireless charging apparatus, resulting in allowing a user to get a stable wireless charging service and proposing a new benefit creation model. The wireless charging apparatus according to an embodiment of the present invention includes a wireless communication unit configured to receive authentication result information relating to a target electronic device from a server, and a wireless charging unit configured to wirelessly transmit power to the target electronic device if the authentication result information indicates a successful authentication, wherein the wireless communication unit transmits the authentication result information to the target electronic device if the authentication result information indicates an unsuccessful authentication.
Owner:LG ELECTRONICS INC

Charging display system

A charging display system and method for operating a display system are provided with the method comprising sensing the presence of a wirelessly rechargeable device proximate to or on a surface through which a presentation area of a display can present image information; identifying a type of the wirelessly rechargeable device; obtaining device representation having features that are related to a portion of the presentation area that can be occupied by the presence of the identified type of rechargeable device; determining a position and orientation of the rechargeable device proximate to or on the surface; and segmenting the presentation area into a wirelessly rechargeable device portion and a graphic presentation portion outside of the determined of the rechargeable device portion. A wireless power signal is transmitted through the rechargeable device portion and graphic information related to the rechargeable device is displayed in the graphic presentation portion.
Owner:APPLE INC

Charging display system

In one aspect, a method is provided for operating a charging display system that is capable of wirelessly charging a rechargeable device positioned on a connector-less charging surface. In accordance with the method, the presence of a chargeable device on the charging surface is detected and the type of the chargeable device is identified. A set of interaction options based upon the identity of the chargeable device with the set, including a charging interaction option, is determined and, a displayable output signal based upon the determined set interaction options is generated. The set of interaction options is initiated based upon the detected presence of the chargeable device on the charging surface and the identified device type and, the output signal is presented on a display of the charging device.
Owner:APPLE INC

Wireless charging systems and methods

An embodiment of a system for wirelessly charging a wrist-worn device may include a radio frequency (RF) charging energy generating element, and an antenna configured to radiate the RF charging energy, the antenna comprising a first coil and a second coil, the first coil and the second coil each comprising a plurality of windings, the windings of the first coil being wound in a direction opposite the direction of the windings of the second coil. An embodiment of a wrist-worn charge-receiving device may include an antenna coil adapted to receive radio frequency (RF) charging energy, the antenna coil comprising non-uniform windings; and a rechargeable power source coupled to the antenna coil, the antenna coil adapted to provide the RF charging energy to the rechargeable power source.
Owner:QUALCOMM INC

Wireless power charging method and apparatus for electronic device

A bidirectional wireless charging method includes performing a mode change to a requesting electronic device if charging is necessary, requesting charging from at least one electronic device, receiving status information from the at least one electronic device that has received the charging request, selecting the electronic device based on the status information, and performing charging by receiving power supplied from the selected at least one electronic device.
Owner:SAMSUNG ELECTRONICS CO LTD

Apparatus and method for wireless charging

Methods and apparatus are provided for wireless charging. Wireless power is supplied by a wireless power supply apparatus and is received at a wireless power reception apparatus. Wireless charging is performed by the wireless power reception apparatus. It is determined whether a human body is approaching while the wireless power reception power apparatus is receiving the wireless power. The wireless charging is interrupted, when it is determined that the human body is approaching.
Owner:SAMSUNG ELECTRONICS CO LTD

Wireless battery charger via carrier frequency signal

Apparatus and methods to wirelessly charge batteries within a radius of a power source. A power transmitter generates a power signal of specific configuration which is received by the power charger. The power charger harvests the received power signal and stores the energy contained within for the purpose of charging target battery or batteries. The typical uses of this invention are but not limited to the home, car, office, and work place. Anywhere where rechargeable batteries are used in a device where they need to be placed or physically removed from the device for recharge by conventional wired chargers, this invention provides method to prolong battery life in such a way to extend the time between a physical wired recharge or eliminate such events all together.
Owner:DISTEFANO MICHAEL VINCENT

Wireless charging apparatus and method

A wireless charging method and apparatus are provided. A non-contact wireless local communication unit performs non-contact wireless local communication for wireless charging authentication through a non-contact wireless local communication antenna. A wireless power receiver receives supply power from a wireless power transmitter by using a resonator resonating on a resonance frequency equal to that of the wireless power transmitter after the wireless charging authentication. A charging controller performs wireless charging by using the supply power received by the wireless power receiver. One or more switches switch between a connection between the non-contact wireless local communication antenna and the non-contact wireless local communication unit, and a connection between the wireless power receiver and the charging controller.
Owner:SAMSUNG ELECTRONICS CO LTD

Wireless interrogation and wireless charging of electronic devices

A system that incorporates teachings of the subject disclosure may include, for example, wireless chargers combined with wireless interrogators. The wireless chargers can transmit power wirelessly, while also wirelessly interrogating a nearby transponder, such as an RFID tag. The wireless chargers with wireless interrogators can also be programmable to allow user-implemented rules operable in response to an interrogation. Such rules can impose restrictions upon whether wireless charging is allowed to take place. Such rules can also be used to select a power-transmitting protocol that is particularly suited for the electronic device being charged. Other embodiments are disclosed.
Owner:POWER FORWARD

Wireless power transmission apparatus and wireless power transmission method

The present invention relates to a method for verifying a charging state of a wireless power receiving apparatus in the wireless power transmitting apparatus, and more particularly, to an apparatus and a method for efficiently performing and controlling wireless power transmission.
To this end, the present invention provides a wireless power transmitting method, wherein a standby state of determining whether at least one wireless power receiving apparatus is positioned within a wireless charge range of the wireless power transmitting apparatus and a power transfer state of transmitting power to the corresponding wireless power receiving apparatus when at least one wireless power receiving apparatus is detected in the standby state are provided, and the standby state includes a first standby state of periodically transmitting a weak detector signal and a strong detector signal and a second standby state in which at least one of a transmission period of the weak detector signal and a transmission period of the strong detector signal is different from that of the first standby state, the method including: determining any one state of the first standby state and the second standby state of the wireless power transmitting apparatus; and transmitting the weak detector signal and the strong detector signal based on the determined standby state, wherein the transmission period of the weak detector signal in the second standby state is longer than the transmission period of the weak detector signal in the first standby state.
Owner:WILUS INST OF STANDARDS & TECH

Wireless power transmission system

The wireless power transmission is a system for providing wireless charging and / or primary power to electronic / electrical devices via microwave energy. The microwave energy is focused onto a device to be charged by a power transmitter having one or more adaptively-phased microwave array emitters. Rectennas within the device to be charged receive and rectify the microwave energy and use it for battery charging and / or for primary power. A communications channel is opened between the wireless power source and the device to be charged. The device to be charged reports to the power source via the channel a received beam signal strength at the rectennas. This information is used by the system to adjust the transmitting phases of the microwave array emitters until a maximum microwave energy is reported by the device to be charged. Backscatter is minimized by physically configuring the microwave array emitters in a substantially non-uniform, non-coplanar manner.
Owner:OSSIA

Apparatus for wireless device charging using radio frequency (RF) energy and device to be wirelessly charged

An apparatus for wireless charging using radio frequency (RF) energy includes a first charger portion having first and second charging areas. The first and second charging areas are located in a common plane, each having at least one coil for wirelessly charging a charge-receiving device placed in proximity thereto. The coils include respective windings, which are wound in opposing directions, each coil being connected in series, each coil configured to charge at least one charge-receiving device. A second charger portion has a third charging area having at least one coil including a winding for wirelessly charging a charge-receiving device placed in proximity to the third charging area, the coil in the third charging area being connected in series with the coils in the first and second charging areas, the third charging area located in a plane that is orthogonal to the plane of the first and second charging areas.
Owner:QUALCOMM INC

Transmitting antenna and transmitter for wireless power charging

The present invention has been made in an effort to overcome the disadvantage that a user has to consciously adjust the positions of a wireless power transmitter and a wireless power receiver. The transmitting antenna for wireless power charging, which wirelessly transmits power to charge a device, includes a first antenna coil section for producing a magnetic field in a first direction, and a second antenna coil section for producing a magnetic field in a second direction. Accordingly, the three-dimensional transmitting antenna can minimize decreases in efficiency caused by the position and direction of the receiver and maximize reception efficiency at a particular point or within a particular range.
Owner:KOREA ELECTRONICS TECH INST

Charging system and charging method thereof

A charging system and the charging method are provided. The charging system comprises a charging unit and a rechargeable unit. The rechargeable unit includes a first wireless communication apparatus and a first wireless charging module. The charging unit includes a second wireless communication apparatus, a second wireless charging module and a processing module. The charging method comprises the steps of: transmitting an authentication code and a charging signal to the second wireless communication apparatus by the first wireless communication apparatus; verifying the authentication code by the processing module after receiving the authentication code and the charging signal from the second wireless communication apparatus; charging the first wireless charging module via wireless charging by the second wireless charging module controlled by the processing module when the authentication code is verified.
Owner:TOPCO SCI

Intelligent wireless power charging system

A system and methodology for intelligent power management of wirelessly networked devices. The system provides for reliable wireless communication via a wireless power charging method and, a method to maintain power capacity of batteries in a wireless device. The batteries are charged via an RF harvesting unit embedded inside the wireless device. An intelligent wireless power charging system further comprises at least two batteries and at least two RF adaptor devices coupled to an AC power line. The first adaptor is set for data communication while the second adaptor is used to transmit the power. In addition, when a first battery is in use during active mode, the second battery is subjected to wireless charging.
Owner:IBM CORP

Method of Handling Wireless Charging Authentication

A method of handling wireless charging authentication for an electronic device of a wireless charging system includes sending a first message to a controller of the wireless charging system to notify the controller that an authentication is required by a wireless charger of the wireless charging system; receiving a second message including authentication information from the controller; and sending a third message including the authentication information to the wireless charger, in order to satisfy the authentication.
Owner:HTC CORP

Method and system for wireless charging in a portable terminal

A method for wirelessly charging a portable terminal using a Radio Frequency (RF) is provided. A charging system detects one or more portable terminals within a predetermined area, and preferably requests information needed for charging to the one or more portable terminals via short-range communication, receives the information in response needed for charging from each of the one or more portable terminals. A portable terminal to be wirelessly charged from among the one or more portable terminals is selected, based on the received information needed for charging, and the charging system transmits a predetermined RF for charging to the selected portable terminal.
Owner:SAMSUNG ELECTRONICS CO LTD

Method and apparatus for efficiency compliance in wireless charging systems

A method and system for efficiency compliance in a wireless battery charging system includes a wireless power source that provides a wireless charging power signal to devices in proximity to the wireless power source. The devices have a receiving coil to receive electrical energy from the wireless charging power signal, and they communicate battery charging metrics to the wireless power source. The wireless power source uses the battery charging metrics to determine a predicted system efficiency to charge the devices over a period of time, and when the predicted efficiency is below an efficiency standard, the wireless power source undertakes an action to improve system efficiency.
Owner:MOTOROLA SOLUTIONS INC

Implantable device and system and method for wireless communication

A wireless communication method and protocol, and wireless devices and systems for stimulation, are provided for communication between a wireless device and a charging device. During active wireless charging, communications (data transmission) from the wireless device to the charging device occurs via pulse loading the receive antenna of the receiving device. Because switching regulation in the receiving device may interfere with the communications, the switching regulation is disabled during a communications window. To further reduce the likelihood of misinterpretation of signals detected in the charging device resulting from the switching regulation or noise, the data bit rate of the pulse loading communications is maintained higher than the switching regulation frequency.
Owner:ADVANCED NEUROMODULATION SYST INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products