Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1503results about "Power installations" patented technology

Unmanned aerial vehicle base station

A method and apparatus comprising a platform, a battery system, a power generation system, a number of charging stations, and a controller. The platform is configured to house a number of unmanned aerial vehicles. The power generation system is connected to the battery system. The power generation system is configured to generate electrical energy from an environment in which the platform is located, and store the electrical energy in the battery system. The number of charging stations is connected to the battery system. The controller is connected to the battery system and is configured to receive sensor data from the number of unmanned aerial vehicles, generate information from the sensor data, and send the information to a remote location.
Owner:THE BOEING CO

Power line sentry charging

A rechargeable battery energized unmanned aerial vehicle having surveillance capability and an ability to clandestinely collect propulsion and other energy needs from a conveniently located and possibly enemy owned energy transmission line. Energy collection is by way of a parked vehicle engagement with the transmission line in a current flow dependent, magnetic field determined, rather than shunt, voltage dependent, conductor coupling. Surveillance during both a parked or docked condition and during aerial vehicle movement is contemplated.
Owner:US SEC THE AIR FORCE THE

Battery charging arrangement for unmanned aerial vehicle utilizing the electromagnetic field associated with utility power lines to generate power to inductively charge energy supplies

A method and apparatus for charging energy supplies in an unmanned aerial vehicle (UAV). The present invention relates to a UAV that comprises an inductive charging device that utilizes the electromagnetic field emanated by overhead / utility power lines, to charge the energy supplies. The UAV also includes a releasable latch for holding power lines to allow for the perching of the UAV on power lines during the charging process. The latch and the inductive charging device may be provided on a single device, a battery augmentation trap (BAT). The UAV may be perched in an upright orientation to allow for takeoff after the charging of energy supplies on the power line.
Owner:THE UNITED STATES OF AMERICA AS REPRESENTED BY THE SECRETARY OF THE NAVY

Systems and methods for UAV battery power backup

Systems and methods are provided for swapping the battery on an unmanned aerial vehicle (UAV) while providing continuous power to at least one system on the UAV. The UAV may be able to identify and land on an energy provision station autonomously. The UAV may take off and / or land on the energy provision station. The UAV may communicate with the energy provision station. The energy provision station may store and charge batteries for use on a UAV. The UAV and / or the energy provision station may have a backup energy source to provide continuous power to the UAV.
Owner:SZ DJI TECH CO LTD

Lift Propulsion and Stabilizing System and Procedure For Vertical Take-Off and Landing Aircraft

Lift propulsion and stabilizing system and procedure for vertical takeoff and landing aircraft that consists in applying simultaneously and combined as lifters during the initial portion of the climb and at the end of the descent of: a) some fans or electric turbines, EDF, and b) at least one rotor with external blades and / or rotary and / or c) the engine flow directed downwards and / or d) pressure air jets injected on leading edges control fins, and / or e) water jets and / or f) supplemented with aerodynamic lift produced during frontal advance of the aircraft, the stabilization is achieved by the gyroscopic stiffness of the rotor and two or more lifting fans oscillating fins and / or air jets located on two or stabilizers more peripheral points in a plane perpendicular to the vertical axis of the aircraft.
Owner:SAIZ MANUEL M

Low drag ducted Ram air turbine generator and cooling system

A low drag ducted ram air turbine generator and cooling system is provided. The ducted ram air turbine generator and cooling system has reduced drag while extracting dynamic energy from the air stream during the complete range of intended flight operating regimes. A centerbody / valve tube having an aerodynamically shaped nose is slidably received in a fairing and primary structure to provide a variable inlet area. An internal nozzle control mechanism attached to the valve tube positions nozzle control doors to provide variable area nozzles directing air flow to the turbine stator and rotor blades to maintain optimum generator efficiency. An alternate embodiment includes an annular internal nozzle having interleaved panels to modulate the air flow to the turbine.
Owner:GHETZLER AERO POWER CORP

Fan driven emergency generator

An emergency electrical power generating apparatus for use with a turbofan engine comprises an electrical generator and a clutch assembly. The clutch connects the generator with a fan assembly of the engine only during a windmill action of the fan assembly.
Owner:PRATT & WHITNEY CANADA CORP

Personal Aircraft

A safe, quiet, easy to control, efficient, and compact aircraft configuration is enabled through the combination of multiple vertical lift rotors, tandem wings, and forward thrust propellers. The vertical lift rotors, in combination with a front and rear wing, permits a balancing of the center of lift with the center of gravity for both vertical and horizontal flight. This wing and multiple rotor system has the ability to tolerate a relatively large variation of the payload weight for hover, transition, or cruise flight while also providing vertical thrust redundancy. The propulsion system uses multiple lift rotors and forward thrust propellers of a small enough size to be shielded from potential blade strike and provide increased perceived and real safety to the passengers. Using multiple independent rotors provides redundancy and the elimination of single point failure modes that can make the vehicle non-operable in flight.
Owner:WISK AERO LLC

Unmanned Aircraft and Operation Method for the Same

An unmanned aircraft includes a propulsion system having a diesel or kerosene internal combustion engine and a charger device for engine charging. The propulsion system can be a hybrid propulsion system or a parallel hybrid propulsion system.
Owner:AIRBUS DEFENCE & SPACE

Vertical take-off and landing aircraft with hybrid power and method

A vertical take-off and landing aircraft including a wing structure including a wing, a rotor operatively supported by the wing, and a hybrid power system configured to drive the rotor, the hybrid power system including a first power system and a second power system, wherein a first energy source for the first power system is different than a second energy source for the second power system.
Owner:SIKORSKY AIRCRAFT CORP

Personal aircraft

A safe, quiet, easy to control, efficient, and compact aircraft configuration is enabled through the combination of multiple vertical lift rotors, tandem wings, and forward thrust propellers. The vertical lift rotors, in combination with a front and rear wing, permits a balancing of the center of lift with the center of gravity for both vertical and horizontal flight. This wing and multiple rotor system has the ability to tolerate a relatively large variation of the payload weight for hover, transition, or cruise flight while also providing vertical thrust redundancy. The propulsion system uses multiple lift rotors and forward thrust propellers of a small enough size to be shielded from potential blade strike and provide increased perceived and real safety to the passengers. Using multiple independent rotors provides redundancy and the elimination of single point failure modes that can make the vehicle non-operable in flight.
Owner:WISK AERO LLC

Purebred and hybrid electric VTOL tilt rotor aircraft

Electrically powered Vertical Takeoff and Landing (VTOL) aircraft are presented. Contemplated VTOL aircraft can include one or more electrical energy stores capable of delivering electrical power to one or more electric motors disposed within one or more rotor housings, where the motors can drive the rotors. The VTOL aircraft can also include one or more sustainer energy / power sources (e.g., batteries, engines, generators, fuel-cells, semi-cells, etc.) capable of driving the motors should the energy stores fail or deplete. Various VTOL configurations are presented including an all-battery purebred design, a light hybrid design, and a heavy hybrid design. The contemplated configurations address safety, noise, and outwash concerns to allow such designs to operate in built-up areas while retaining competitive performance relative to existing aircraft.
Owner:OVERAIR INC

Energy Cell Regenerative System For Electrically Powered Aircraft

A system for providing regenerative power for an aircraft to sustain flight includes multiple energy cells disposed within the aircraft, the energy cells being configured to supply power to a propulsion motor and electronics of the aircraft, a fan generator harnessing propeller blast created by an aircraft propeller and converting kinetic energy of the propeller blast into electrical energy, a charger receiving the electrical energy generated by the fan generator and using the electrical energy to recharge one or more of the energy cells, and a power transfer switch selectively connecting one of the energy cells to the propulsion motor and electronics of the aircraft, such that the energy cells are rotated one at a time to power the propulsion motor and electronics. During recharging, the one or more of the energy cells are disconnected by the power transfer switch.
Owner:ELECTRONAIR

Gas turbine gearbox

A gearbox for rotating a propeller in a selected one of a first and second direction is provided. The gearbox includes a many common components, selected irrespective of desired propeller direction, and a few unique components selected based on desired propeller direction.
Owner:PRATT & WHITNEY CANADA CORP

Anti-icing system for wind turbines

InactiveUS20050242233A1Lower Level RequirementsAvoid and reduce accretionPump componentsEngine fuctionsNacelleEngineering
A de-icing and anti-icing arrangement for a Wind Energy Converting System (WECS), a WECS comprising a de-icing and anti-icing arrangement and a method for preventing and eliminating ice accretion on the rotor blades of a WECS are provided. The WECS comprises a tower, a rotor having a plurality of blades that rotate due to wind force, a nacelle including a first means for transforming the rotor's rotational movement to electric power, and a second means for permitting the flow of fluid from volumes defined by the rotor blades, the rotor blades comprising an external surface having openings in fluid connection with the volumes inside the blades for permitting the flow of fluid to the outside of the blades to fluid-thermodynamically interact with the wind hitting the part of the blade surface, and thereby prevent or eliminate the accretion of ice on the external surface of the blade.
Owner:BATTISTI LORENZO

Solid oxide regenerative fuel cell for airplane power generation and storage

InactiveUS6854688B2Reactant parameters controlFuel cells groupingUnitized regenerative fuel cellElectrolysis
A Solid Oxide Regenerative Fuel Cell (SORFC) or a Solid Oxide Fuel Cell (SOFC) is incorporated into an electrically powered airplane to provide either regenerative or primary electrical energy. The SORFC, the SOFC, or any other suitable fuel cell within an airplane may also be used to heat payload or equipment within the airplane. The SORFC is not only capable of generating electrical energy from fuel and a suitable oxidizer, but can also generate fuel through electrolysis of oxidized fuel. Thus, the SORFC system powering an airplane can obtain oxygen oxidant reactant from the air and avoid the complexity, weight, volume, and cost associated with oxygen storage.
Owner:BLOOM ENERGY CORP

Passive cooling system for auxiliary power unit installation

A passive cooling system for an auxiliary power unit (APU) installation on an aircraft is provided. The system is for an auxiliary power unit having at least a compressor portion of a gas turbine engine and an oil cooler contained separately within a nacelle. The system includes the auxiliary power unit housed within the nacelle of the aircraft, an engine exhaust opening defined in the aft portion of the nacelle and communicating with the gas turbine engine, at least a first air inlet duct communicating with a second opening defined in said nacelle and with said compressor portion and the oil cooler is located within a second duct communicating with an opening other than the engine exhaust opening of said nacelle and with the engine exhaust opening. Exterior cooling air and engine exhaust ejected through said engine exhaust opening entrain cooling air through said second duct to said oil cooler, and thus provide engine oil cooling. An exhaust eductor is also provided.
Owner:PRATT & WHITNEY CANADA CORP

Independent power generation in aircraft

Systems and methods of independent power generation are disclosed. A particular system includes an aircraft having at least one engine and a plurality of independent power units. Each power unit of the plurality of independent power units generates electricity independently of the at least one engine. The plurality of independent power units include at least a first independent power unit that generates first electricity having a first set of electrical characteristics and a second independent power unit that generates second electricity having a second set of electrical characteristics concurrently with the first power unit generating the first electricity. The first set of electrical characteristics is different than the second set of electrical characteristics.
Owner:THE BOEING CO

Combined fuel cell aircraft auxiliary power unit and environmental control system

Combined aircraft hybrid fuel cell auxiliary power unit and environmental control system and methods are disclosed. In one embodiment, an auxiliary power unit includes a fuel cell component which chemically converts combustible fuel into electrical energy. Unutizlied fuel emitted by the fuel cell component is combusted by a burner to generate heated gas. The heated gas is received by and drives a turbine, which in turn drives a drive shaft. A compressor, coupled to the drive shaft, compresses a source of oxidizing gas for supplying compressed oxidizing gas to the fuel cell component and to an environmental control system. A heat exchanger controls the temperature of the pressurized air leaving the environmental control system to provide the cabin air supply. Finally, a generator is coupled to the drive shaft to be driven by the turbines to generate additional electrical energy.
Owner:THE BOEING CO

Apparatus for producing water onboard of a craft driven by a power plant

Water is generated onboard of a craft such as an aircraft or in a self-contained stationary system by partially or completely integrating a water generating unit into a power plant of the craft or system. The water generating unit includes one or more high temperature fuel cells which partially or completely replace the combustion chamber or chambers of the power plant. A reformer process is integrated into the high temperature fuel cell which is arranged between, on the one hand, a fan (30) and power plant compressor stages (31, 32) and, on the other hand, power plant turbine stages (33, 34). These power plant stages may be provided in such redundant numbers that safety and redundancy requirements are satisfied.
Owner:AIRBUS OPERATIONS GMBH

Fuel cell system and method with increased efficiency and reduced exhaust emissions

An apparatus includes a low temperature fuel cell, a high temperature fuel cell or a hydrocarbon reformer, a hydrocarbon fuel supply, an oxygen generator, and a molecular sieve. The oxygen generator separates air to provide oxygen enriched air to the fuel cells and the reformer. Hydrocarbon fuel is provided to the high temperature fuel cell or the reformer, and the exhaust gas thereof may be separated through the molecular sieve, to provide hydrogen enriched gas to the low temperature fuel cell, water, carbon monoxide, and carbon dioxide. The low temperature fuel cell outputs nitrogen gas and high purity water. The emitted carbon oxides and nitrogen oxides are catalytically converted to nitrogen and carbon dioxide being returned to the atmosphere. The process and apparatus are very efficient, produce high purity water and electrical energy, and are environmentally friendly.
Owner:AIRBUS OPERATIONS GMBH

Purebred and Hybrid Electric VTOL Tilt Rotor Aircraft

Electrically powered Vertical Takeoff and Landing (VTOL) aircraft are presented. Contemplated VTOL aircraft can include one or more electrical energy stores capable of delivering electrical power to one or more electric motors disposed within one or more rotor housings, where the motors can drive the rotors. The VTOL aircraft can also include one or more sustainer energy / power sources (e.g., batteries, engines, generators, fuel-cells, semi-cells, etc.) capable of driving the motors should the energy stores fail or deplete. Various VTOL configurations are presented including an all-battery purebred design, a light hybrid design, and a heavy hybrid design. The contemplated configurations address safety, noise, and outwash concerns to allow such designs to operate in built-up areas while retaining competitive performance relative to existing aircraft.
Owner:OVERAIR INC

Hybrid engine accessory power system

A system for generating accessory power from a gas turbine engine is provided by the present invention. The system includes an electronic control device for monitoring at least one parameter which provides information about an incipient change in power demand, a control valve operated by the control device for supplying bleed air from the engine during a transient state in response to the at least one monitored parameter, and a pneumatically operated device for receiving the bleed air and for generating power to operate equipment onboard an aircraft. The pneumatically operated device may be an air turbine or a pneumatically integrated generator.
Owner:UNITED TECH CORP

Load bearing element and a method for manufacturing a load bearing element

A load bearing element for attachment of a heat generating unit to a heat sensitive supporting structure, wherein said load bearing element includes at least one body integrally formed by additive layer manufacturing, ALM. The body is adapted to provide a controlled heat transfer from said heat generating unit to said heat sensitive supporting structure.
Owner:AIRBUS OPERATIONS GMBH

System and method for performance monitoring of operational equipment used with machines

A component trend monitoring system for monitoring the performance of components and comparing the performance with stored performance data to accurately trend and predict the failure of the components. The system includes computer chips attached to the various components, for receiving and storing historical and performance data about each component, and a processor for retrieving the stored data from the memory chips. The processor receives and analyzes the data against historical data for predicting failure based upon past trends within the historical data. The processor also provides a signal for impending failure of a given component.
Owner:HONEYWELL INT INC

Turbo-Compressor System and Method for Extracting Energy from an Aircraft Engine

A turbo-compressor (TC) system for extracting energy from an aircraft engine. The TC system has a TC assembly with a turbine mechanically coupled to at least one compressor. The TC system has a TC inlet in fluid communication with a bleed air system in the aircraft engine and a TC outlet in fluid communication with an air conditioning (AC) pack of an aircraft air conditioning system and configured to extract reduced temperature pack inlet air from the TC assembly into the air conditioning pack. The TC system has a ram air inlet coupled to the at least one compressor. The TC system has a TC control valve, and a TC check valve or a TC shutoff valve, both coupled to the TC assembly via a plurality of connective ducts. The TC system extracts energy from the bleed air to reduce bleed air flow and AC pack ram air usage.
Owner:THE BOEING CO

Localized utility power system for aircraft

The disclosure provides for an aircraft galley and lavatory energy system capable of independent operation from a separate aircraft energy generating system. The galley and lavatory energy system comprises an energy source providing electrical energy, heat energy, and at least one by-product; a plurality of galley and lavatory devices for receiving the electrical energy, the heat energy, and the at least one by-product; and, a plurality of connectors for connecting the electrical energy, the heat energy, and the at least one by-product to the galley and lavatory devices. The energy source comprises a fuel cell, a fuel module, and optionally, a supplemental fuel source.
Owner:THE BOEING CO

Jet fuel based high pressure solid oxide fuel cell system

A power system for an aircraft includes a solid oxide fuel cell system which generates electric power for the aircraft and an exhaust stream; and a heat exchanger for transferring heat from the exhaust stream of the solid oxide fuel cell to a heat requiring system or component of the aircraft. The heat can be transferred to fuel for the primary engine of the aircraft. Further, the same fuel can be used to power both the primary engine and the SOFC. A heat exchanger is positioned to cool reformate before feeding to the fuel cell. SOFC exhaust is treated and used as inerting gas. Finally, oxidant to the SOFC can be obtained from the aircraft cabin, or exterior, or both.
Owner:HAMILTON SUNDSTRAND CORP

Combined fuel cell aircraft auxiliary power unit and environmental control system

Combined aircraft hybrid fuel cell auxiliary power unit and environmental control system and methods are disclosed. In one embodiment, an auxiliary power unit includes a fuel cell component which chemically converts combustible fuel into electrical energy. Unutilized fuel emitted by the fuel cell component is combusted by a burner to generate heated gas. The heated gas is received by and drives a turbine, which in turn drives a drive shaft. A compressor, coupled to the drive shaft, compresses a source of oxidizing gas for supplying compressed oxidizing gas to the fuel cell component and to an environmental control system. A heat exchanger controls the temperature of the pressurized air leaving the environmental control system to provide the cabin air supply. Finally, a generator is coupled to the drive shaft to be driven by the turbines to generate additional electrical energy.
Owner:THE BOEING CO

RAM fan system for an aircraft environmental control system

An environmental control system includes a RAM air fan system downstream of a respective heat exchanger in the relatively high temperature RAM exhaust. The RAM air fan includes a RAM air fan electric motor such that the RAM air fan is driven at a speed independent of an air cycle machine. A fan rotor is completely supported by hydrodynamic foil journal and thrust bearings. As the RAM air fan is driven by the RAM air fan electric motor the RAM air fan is installed in the environmental control system as a self-contained system.
Owner:HAMILTON SUNDSTRAND CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products