Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

133 results about "Regenerative fuel cell" patented technology

A regenerative fuel cell or reverse fuel cell (RFC) is a fuel cell run in reverse mode, which consumes electricity and chemical B to produce chemical A. By definition, the process of any fuel cell could be reversed. However, a given device is usually optimized for operating in one mode and may not be built in such a way that it can be operated backwards. Standard fuel cells operated backwards generally do not make very efficient systems unless they are purpose-built to do so as with high-pressure electrolysers, regenerative fuel cells, solid-oxide electrolyser cells and unitized regenerative fuel cells.

Regenerative fuel cell technology

For a mobile fuel cell system a narrow-gap modular approach allows reforming to be performed in the same architecture as the fuel cell. A regenerative fuel cell operates much like a battery using electrical power to produce hydrogen and oxygen. The preferred mode of using the regenerative fuel cell is as a battery charger since this application is able to use a much smaller fuel cell than is required to power the vehicle. A novel equilibrating tank between the electrolysis oxygen and hydrogen tanks allows pressurized oxygen and hydrogen to be used without mechanical compression equipment.
Owner:SUPPES GALEN J

Solid oxide regenerative fuel cell for airplane power generation and storage

InactiveUS6854688B2Reactant parameters controlFuel cells groupingUnitized regenerative fuel cellElectrolysis
A Solid Oxide Regenerative Fuel Cell (SORFC) or a Solid Oxide Fuel Cell (SOFC) is incorporated into an electrically powered airplane to provide either regenerative or primary electrical energy. The SORFC, the SOFC, or any other suitable fuel cell within an airplane may also be used to heat payload or equipment within the airplane. The SORFC is not only capable of generating electrical energy from fuel and a suitable oxidizer, but can also generate fuel through electrolysis of oxidized fuel. Thus, the SORFC system powering an airplane can obtain oxygen oxidant reactant from the air and avoid the complexity, weight, volume, and cost associated with oxygen storage.
Owner:BLOOM ENERGY CORP

Nitrogen-doped carbon nanotube/Co composite catalyst and preparation method and application thereof

The invention belongs to the field of preparation and application of energy source materials and discloses a nitrogen-doped carbon nanotube / Co composite catalyst and a preparation method and application thereof. The preparation method includes: 1), respectively preparing melamine, cobalt salt and P123 into water solutions; 2), adding the melamine solution into the P123 solution, stirring for mixing, adding the cobalt salt solution, stirring for mixing, performing ultrasonic treatment, and heating while stirring until water is evaporated to obtain a precursor material; 3), pre-calcining the precursor material at 200-400 DEG C in an inert gas atmosphere, calcining at 450-600 DEG C and at 750-900 DEG C respectively, using an acid solution for soaking, cleaning, and drying to obtain the composite catalyst. The catalyst is high in oxygen reduction and oxygen evolution catalytic activity and stability and has high hydrogen evolution catalytic activity and stability in an acidic condition. The preparation method is simple, extensive in raw material source, low in cost and suitable for large-scale production. The composite catalyst is used in the field of integrated regenerative fuel cells.
Owner:SOUTH CHINA UNIV OF TECH

Co-production of hydrogen and electricity in a high temperature electrochemical system

A high temperature electrochemical system, such as a solid oxide fuel cell system, generates hydrogen and optionally electricity in a fuel cell mode. At least a part of the generated hydrogen is separated and stored or provided to a hydrogen using device. A solid oxide regenerative fuel cell system stores carbon dioxide in a fuel cell mode. The system generates a methane fuel in an electrolysis mode from the stored carbon dioxide and water by using a Sabatier subsystem. Alternatively, the system generates a hydrogen fuel in an electrolysis mode from water alone.
Owner:BLOOM ENERGY CORP

SORFC power and oxygen generation method and system

InactiveUS7045238B2CellsPhotography auxillary processesUnitized regenerative fuel cellElectrolysis
A solid oxide regenerative fuel cell system is used to supply power in a fuel cell mode and to generate metabolic oxygen and a hydrocarbon fuel reserve in an electrolysis mode. The system may also be used as a secondary power source or for energy peak shaving applications.
Owner:BLOOM ENERGY CORP

Hydroxyl oxidize iron-nickel-iron hydrotalcite integrated oxygen evolution electrode and preparation method and application thereof

The invention relates to a hydroxyl oxidize iron-nickel-iron hydrotalcite integrated oxygen evolution electrode applicable to alkaline mediums and a preparation method and application thereof. The electrode is applicable to the oxygen evolution reaction in the water-electrolytic hydrogen making process under catalytic alkaline conditions. The hydroxyl oxidize iron-nickel-iron hydrotalcite integrated oxygen evolution electrode and the preparation method and application thereof have the advantages as follows: the nickel-iron hydroxide integrated electrode is shape-controlled, the preparation process is simple and under mild conditions, and the electrode can be used for a water electrolytic tank for hydrogen production from water splitting under external bias potentials; the prepared hydroxyloxidize iron-nickel-iron hydrotalcite integrated oxygen evolution electrode further has a better performance when being used in an alkaline solid polymer electrolyte (AEM) water electrolytic tank; and besides, an extensive utilization value in achieved in regenerative fuel cells (RFC), photoelectro-catalytic devices and electrolytic hydrogen generators.
Owner:DALIAN INST OF CHEM PHYSICS CHINESE ACAD OF SCI

Power generation system using a combustion system and a fuel cell

A regenerative fuel cell is combined with a combustion engine such as a Pulse Detonation Engine (PDE) to create a closed-loop power generation system. Stored hydrogen and oxygen are used by the regenerative fuel cell, and by the combustion engine, in which the reaction of the hydrogen and oxygen produces water in the gas phase (steam). The steam is used to generate work from a turbine shaft, which is used to drive a propulsion system for the marine vessel. After the steam passes through the turbine, the steam is cooled back to liquid water by a condenser, and stored with the water produced by the regenerative fuel cell. The stored water can be converted back into hydrogen and oxygen by using electrical power external to the closed-loop system. After regeneration of the water into hydrogen and oxygen, the closed-loop power system would be ready for operation again.
Owner:LOCKHEED MARTIN CORP

SORFC system with non-noble metal electrode compositions

A solid oxide regenerative fuel cell includes a ceramic electrolyte, a first electrode which is adapted to be positively biased when the fuel cell operates in a fuel cell mode and in an electrolysis mode, and a second electrode which is adapted to be negatively biased when the fuel cell operates in the fuel cell mode and in the electrolysis mode. The second electrode comprises less than 1 mg / cm2 of noble metal. By maintaining a reducing atmosphere on the second electrode at all times noble metals can be eliminated from the electrode composition which substantially reduces the cost of the fuel cell.
Owner:BLOOM ENERGY CORP

Power generation system using a combustion system and a fuel cell

A regenerative fuel cell is combined with a combustion engine such as a Pulse Detonation Engine (PDE) to create a closed-loop power generation system. Stored hydrogen and oxygen are used by the regenerative fuel cell, and by the combustion engine, in which the reaction of the hydrogen and oxygen produces water in the gas phase (steam). The steam is used to generate work from a turbine shaft, which is used to drive a propulsion system for the marine vessel. After the steam passes through the turbine, the steam is cooled back to liquid water by a condenser, and stored with the water produced by the regenerative fuel cell. The stored water can be converted back into hydrogen and oxygen by using electrical power external to the closed-loop system. After regeneration of the water into hydrogen and oxygen, the closed-loop power system would be ready for operation again.
Owner:LOCKHEED MARTIN CORP

Hydrogen Storage System and Method of Operation Thereof

A regenerative fuel cell system is provided having at least one hydrogen storage container fluidly coupled to at least one hydrogen generator and at least one power generator. Each power generator further includes a fuel cell fluidly coupled to the hydrogen storage container, an electric energy storage device, and an unregulated dc bus electrically connected to said fuel cell and said electric storage device. The system further provides for a health monitoring system for determining the occurrence of critical events which may necessitate the disabling of the system.
Owner:PROTON ENERGY SYST

Field Deployable Power Distribution system and Method Thereof

A system for providing field deployable electrical power distribution is provided. The system includes a plurality of power sources providing electrical power to meet the electrical needs of a field operations camp. The power sources include at least one regenerative fuel cell that is arranged to provide a electrical power when renewable energy sources are unavailable. Also provided is at least one generator and one regenerative fuel cell electrically connected to the plurality of loads. Also provided is a plurality of power converters, each of the plurality of power converters being electrically connected between the at least one generator and regenerative fuel cell and one of the plurality of loads. An arrangement is also included for providing a high availability battery charging station.
Owner:PROTON ENERGY SYST

Bifunctional catalytic electrode

InactiveUS6838205B2Adequate flowCellsRegenerative fuel cellsUnitized regenerative fuel cellHydrogen
The present invention relates to an oxygen electrode for a unitized regenerative hydrogen-oxygen fuel cell and the unitized regenerative fuel cell having the oxygen electrode. The oxygen electrode contains components electrocatalytically active for the evolution of oxygen from water and the reduction of oxygen to water, and has a structure that supports the flow of both water and gases between the catalytically active surface and a flow field or electrode chamber for bulk flow of the fluids. The electrode has an electrocatalyst layer and a diffusion backing layer interspersed with hydrophilic and hydrophobic regions. The diffusion backing layer consists of a metal core having gas diffusion structures bonded to the metal core.
Owner:LYNNTECH

SORFC system with non-noble metal electrode compositions

A solid oxide regenerative fuel cell includes a ceramic electrolyte, a first electrode which is adapted to be positively biased when the fuel cell operates in a fuel cell mode and in an electrolysis mode, and a second electrode which is adapted to be negatively biased when the fuel cell operates in the fuel cell mode and in the electrolysis mode. The second electrode comprises less than 1 mg / cm2 of noble metal.
Owner:BLOOM ENERGY CORP

Precious Metal Oxide Catalyst for Water Electrolysis

The invention is directed to iridium oxide based catalysts for use as anode catalysts in PEM water electrolysis. The claimed composite catalyst materials comprise iridium oxide (IrO2) and optionally ruthenium oxide (RuO2) in combination with a high surface area inorganic oxide (for example TiO2, Al2O3, ZrO2 and mixtures thereof). The inorganic oxide has a BET surface area in the range of 50 to 400 m2 / g, a water solubility of lower than 0.15 g / l and is present in a quantity of less than 20 wt. % based on the total weight of the catalyst. The claimed catalyst materials are characterised by a low oxygen overvoltage and long lifetime in water electrolysis. The catalysts are used in electrodes, catalyst-coated membranes and membrane-electrode-assemblies for PEM electrolyzers as well as in regenerative fuel cells (RFC), sensors, and other electrochemical devices.
Owner:UMICORE AG & CO KG

Bipolar plate of fuel cell and method for preparing carbon titanium nanocomposite film on surface thereof

The invention discloses a bipolar plate of a fuel cell and a method for preparing a carbon titanium nanocomposite film on the surface thereof, belongs to the technical field of surface modification of metallic materials and fuel cells, and relates to a bipolar plate of a regenerative fuel cell and a proton exchange membrane fuel cell and a preparation technology of a surface modified film of the bipolar plate. The bipolar plate consists of a metal thin plate substrate and carbon titanium nanocomposite films which are formed on the surfaces at two sides of the substrate, wherein the metal thin plate substrate is a titanium plate and a stainless steel plate; the carbon titanium nanocomposite film is an amorphous and nanocrystalline composite film which is prepared on an amorphous carbon substrate with an arc ion film plating method and on which titanium and titanium carbide nanocrystals are distributed; the thickness of the film is of micron dimension; and the size of the crystal grains of the nanocrystals is of micron dimension. The invention has the effects and advantages that: the bipolar plate is low in manufacturing cost, has prominent composite performance such as corrosion resistance, conductivity, hydrophobicity and the like, can be used for replacing a noble metal bipolar plate and a graphite bipolar plate, and can be used as a cell bipolar plate of the proton exchange membrane fuel cell and an electrolytic cell bipolar plate of the regenerative fuel cell.
Owner:DALIAN UNIV OF TECH

Co-production of hydrogen and electricity in a high temperature electrochemical system

A high temperature electrochemical system, such as a solid oxide fuel cell system, generates hydrogen and optionally electricity in a fuel cell mode. At least a part of the generated hydrogen is separated and stored or provided to a hydrogen using device. A solid oxide regenerative fuel cell system stores carbon dioxide in a fuel cell mode. The system generates a methane fuel in an electrolysis mode from the stored carbon dioxide and water by using a Sabatier subsystem. Alternatively, the system generates a hydrogen fuel in an electrolysis mode from water alone.
Owner:BLOOM ENERGY CORP

Nitrogen and phosphor-doped carbon-based nonmetallic oxygen reduction/separation double-effect catalyst and preparation method thereof

ActiveCN107346825AEfficient oxygen reductionEfficient reactivityCell electrodesPorous carbonOxygen
The invention relates to a nitrogen and phosphor-doped carbon-based nonmetallic oxygen reduction / separation double-effect catalyst and a preparation method thereof and belongs to the technical field of a catalyst. A simple method is adopted for synthesizing a covalent organic polymer rich in nitrogen and phosphor on a carbon carrier, uniformly and regularly distributing the nitrogen source and phosphor source on the carbon source surface and then further performing high-temperature calcining carbonizing process, thereby preparing a porous carbon material doped with nitrogen and phosphor. The material is low in cost and easily prepared, has efficient oxygen reduction / separation reaction catalytic activity and also has higher stability. The catalyst has wide application prospect in the fields of rechargeable metal-air battery, regenerative fuel cells, and the like.
Owner:BEIJING UNIV OF CHEM TECH

Catalyst using metal oxide as carrier for fuel cells and application thereof

The invention discloses a catalyst using a metal oxide as a carrier for fuel cells and application thereof. The catalyst is characterized in that: the metal oxide as the carrier has catalytic oxygen evolution function simultaneously, and a noble metal with catalytic oxygen reduction function is supported on the metal oxide; the nanoparticles of the noble metal are highly dispersed on the surface of the metal oxide as the carrier, wherein the mass fraction of the noble metal is 2 to 70 percent in the catalyst. The catalyst alone or the catalyst mixed with platinum black in a certain proportionis applied to bifunctional oxygen electrodes for utilized regenerative fuel cells. Compared with the traditional mechanical mixture of platinum black and an oxide from catalytic oxygen evolution reaction, the fuel cell and water electrolysis performances of the cells are greatly improved, and the performance is close to that of a commercial Pt / C catalyst in fuel cells. The catalyst is applied to fuel cell oxygen electrodes to effectively solve the problems that the activity of the catalyst is deceased by the corrosion of the carrier.
Owner:DALIAN INST OF CHEM PHYSICS CHINESE ACAD OF SCI

Method for preparing hierarchically porous doped carbon material and its use

A method for preparing a hierarchically porous doped carbon material includes the steps of heating a mixture including an etching agent precursor and a pore-generating agent. The pore-generating agent is embedded in a matrix including a carbon source and a dopant source for simultaneously carbonizing the carbon source. The method further includes doping with the dopant and etching the pore-generating agent for obtaining the hierarchically porous doped carbon material.The hierarchically porous doped carbon material can form an electrode, and an energy storage device such as a supercapacitor can include such an electrode. The hierarchically porous doped carbon material can also help form an energy storage and conversion device such as a metal-air battery or a regenerative fuel cell.
Owner:CITY UNIVERSITY OF HONG KONG

Catalyst for water electrolysis and preparation and application thereof

The invention relates to an anode catalyst used for a water electrolysis device of solid polymer electrolyte. The molecular formula of the catalyst is IrxRu1-xMyOz, wherein x is more than 0 and not more than 1, y is more than 0 and not more than 0.3, z is more than 1.5 and not more than 2.9, and M is one or more of such transition metals as Mo, W and Cr. In terms of the gross weight of the catalyst, the weight ratio of M in the catalyst is less than 10wt%. The required catalyst is characterized in that addition of the third component (or the fourth component) reduces the microcrystal grains of the catalyst, enlarges the specific surface area of the catalyst and improves the catalytic activity of the catalyst. The catalyst has lower overpotential and long life when serving as the anode catalyst in an SPE water electrolysis cell. The catalyst is used for the electrodes for oxygen evolution of the SPE water electrolysis cell, catalyst-membrane assemblies (CCM), membrane-electrode assemblies (MEA), regenerative fuel cells (RFC) and sensors.
Owner:DALIAN INST OF CHEM PHYSICS CHINESE ACAD OF SCI

Wave rotor based power and propulsion generation for a marine vessel

A hybrid power and propulsion generation system for a marine vessel is provided that combines a fuel cell with a wave rotor / combustor. A wave rotor that uses gas dynamics (shock and expansion) processes within rotating passages, using a hydrogen and oxygen supply in fluid communication with the wave rotor, is combined with a regenerative fuel cell for power generation for an underwater vessel.
Owner:LOCKHEED MARTIN CORP

Perovskite oxide catalyst and preparation method and application thereof

The invention discloses a perovskite oxide catalyst, a preparation method thereof, and application of the perovskite oxide catalyst to an oxygen evolution reaction. The structural formula of the perovskite oxide catalyst is ABO3-delta, wherein A is a rare-earth metal element or an alkaline earth element, B is a transition metal element, delta is greater than or equal to 0 and less than or equal to1, and B is selected from two or more of Nb, Ti, Co, Mn, Fe, Ni, Al, Mo, Cu, Sc or Cr. The perovskite oxide catalyst has the excellent oxygen evolution reaction (OER) activity and stability, and canserve as an electric catalyst in the fields such as renewable fuel cells, rechargeable metal-air batteries and water electrolysis. The perovskite oxide catalyst can be prepared through traditional technologies such as a sol-gel method and a solid phase method, the method is simple, and the perovskite oxide catalyst has potential of large-scale preparation.
Owner:NANJING UNIV OF AERONAUTICS & ASTRONAUTICS

Energy storage and generation systems

This disclosure relates to energy storage and generation systems, e.g., combination of flow battery and hydrogen fuel cell, that exhibit operational stability in harsh environments, e.g., both charging and discharging reactions in a regenerative fuel cell in the presence of a halogen ion or a mixture of halogen ions. This disclosure also relates to energy storage and generation systems that are capable of conducting both hydrogen evolution reactions (HERs) and hydrogen oxidation reactions (HORs) in the same system. This disclosure further relates to energy storage and generation systems having low cost, fast response time, and acceptable life and performance.
Owner:RAMOT AT TEL AVIV UNIV LTD

Flower ball-shaped nickel/cobalt oxide oxygen evolution catalyst, and preparation method and application thereof

The invention relates to a flower ball-shaped nickel / cobalt oxide oxygen evolution catalyst, and a preparation method and application thereof. Concretely, nickel salt and cobalt salt are used as precursors; proper surfactants (such as DTAB (dodecyl trimethyl ammonium bromide) and CTAB (cetyltrimethyl ammonium bromide)) are added; the materials are dissolved into a small molecule organic solvent; under the participation of a coordination agent, the hydrothermal reaction is performed; the nickel / cobalt hydroxide nanometer material is prepared; through the steps of centrifugation washing, drying, roasting and the like, the nickel / cobalt oxide flower balls with the diameter being about 5mum are prepared. The nickel / cobalt oxides are applied to the oxygen evolution reaction in the water electrolysis hydrogen preparation process under the catalysis basic condition. The nickel / cobalt oxide obtained through preparation has large specific surface area; the appearance is controllable; the preparation process is simple; the conditions are mild; under the additional bias pressure, the method can be used for electrolysis pool water decomposition hydrogen preparation. The prepared nickel / cobalt oxide has good performance when being used as an alkaline solid polymer electrolyte (AEM) water electrolysis pool. The flower ball-shaped nickel / cobalt oxide oxygen evolution catalyst has wide application values in RFC (regenerative fuel cells), photoelectrocatalysis and electrolysis hydrogen generator devices.
Owner:DALIAN INST OF CHEM PHYSICS CHINESE ACAD OF SCI

Catalysts and electrodes for fuel cells

A catalyst composition comprising at least one precious metal, wherein the catalyst composition is capable of catalyzing, in the presence of a halogen ion or a mixture of halogen ions, a charging reaction and a discharging reaction in a regenerative fuel cell. This disclosure relates to electrodes comprising those catalysts that are useful in fuel cells. The catalysts are active towards hydrogen evolution reaction (HER) and hydrogen oxidation reaction (HOR) and porous electrodes are made in a process designed to control their porosity. The catalysts and electrodes are employed in regenerative fuel cells comprising hydrogen and halogen acid or mixture of halogen acids. The catalysts are particularly useful in hydrogen / bromine reduction / oxidation reactions. The catalysts exhibit highly acceptable life and performance.
Owner:RAMOT AT TEL AVIV UNIV LTD

Structure of ultrathin membrane electrode for SPE water electrolysis and preparation and application of structure

The invention provides a structure of an ultrathin membrane electrode for SPE water electrolysis and a preparation method of the structure. The preparation method comprises the steps that firstly, a gold foil is adopted as a raw material, an dealloy method is adopted for obtaining a nano porous gold thin membrane, and then the thin membrane is transfer-printed to an ion exchange membrane; and the nano porous gold thin membrane is adopted as a supporting layer to carry a catalyst, and the ultrathin membrane electrode is manufactured. The manufactured membrane electrode has the beneficial effects of being small in catalyst carrying amount, high in utilization rate, easy to amplify and the like. The manufactured membrane electrode can be used for a water electrolysis pool, a regenerative fuel cell and other electrochemical reactors.
Owner:DALIAN INST OF CHEM PHYSICS CHINESE ACAD OF SCI

Optimized preparation method of membrane electrode containing anion exchange resin transition layer used for electrolysis

The invention relates to an optimized preparation method of a membrane electrode containing an anion exchange resin transition layer used for electrolysis. The membrane electrode subassembly includes a specific combination of an anion exchange resin transition layer, a catalyst layer, a cathode gas diffusion layer, an anode gas diffusion layer and an anion exchange membrane. The membrane electrode subassembly prepared by the invention has a good performance when the membrane electrode subassembly uses as alkaline solid polymer electrolyte (AEM) water electrolysis. The membrane electrode has a wide utilization value in regenerative fuel cell (RFC), photoelectrocatalysis and electrolytic hydrogen generator.
Owner:DALIAN INST OF CHEM PHYSICS CHINESE ACAD OF SCI

Regenerative fuel cell system and method of operation thereof

A regenerative fuel cell system is provided having at least one hydrogen storage container fluidly coupled to at least one hydrogen generator and at least one power generator. Each power generator further includes a fuel cell fluidly coupled to the hydrogen storage container, an electric energy storage device, and an unregulated dc bus electrically connected to said fuel cell and said electric storage device. The system further provides for a health monitoring system for determining the occurrence of critical events which may necessitate the disabling of the system.
Owner:PROTON ENERGY SYST
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products