Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

317 results about "Renewable fuels" patented technology

Renewable fuels are fuels produced from renewable resources. Examples include: biofuels (e.g. Vegetable oil used as fuel, ethanol, methanol from clean energy and carbon dioxide or biomass, and biodiesel) and Hydrogen fuel (when produced with renewable processes). This is in contrast to non-renewable fuels such as natural gas, LPG (propane), petroleum and other fossil fuels and nuclear energy. Renewable fuels can include fuels that are synthesized from renewable energy sources, such as wind and solar. Renewable fuels have gained in popularity due to their sustainability, low contributions to the carbon cycle, and in some cases lower amounts of greenhouse gases. The geo-political ramifications of these fuels are also of interest, particularly to industrialized economies which desire independence from Middle Eastern oil.

Slurry dewatering and conversion of biosolids to a renewable fuel

ActiveUS20060096163A1Readily removed mechanicallyLow oxygenBio-organic fraction processingBiofuelsEmission standardSlurry
In the processes for treating municipal sewage and storm water containing biosolids to discharge standards, biosolids, even after dewatering, contain typically about 80% water bound in the dead cells of the biosolids, which gives biosolids a negative heating value. It can be incinerated only at the expense of purchased fuel. Biosolids are heated to a temperature at which their cell structure is destroyed and, preferably, at which carbon dioxide is split off to lower the oxygen content of the biosolids. The resulting char is not hydrophilic, and it can be efficiently dewatered and / or dried and is a viable renewable fuel. This renewable fuel can be supplemented by also charging conventional biomass (yard and crop waste, etc.) in the same or in parallel facilities. Similarly, non-renewable hydrophilic fuels can be so processed in conjunction with the processing of biosolids to further augment the energy supply.
Owner:SGC ADVISORS

Method and Apparatus for Automated, Modular, Biomass Power Generation

Method and apparatus for generating a low tar, renewable fuel gas from biomass and using it in other energy conversion devices, many of which were designed for use with gaseous and liquid fossil fuels. An automated, downdraft gasifier incorporates extensive air injection into the char bed to maintain the conditions that promote the destruction of residual tars. The resulting fuel gas and entrained char and ash are cooled in a special heat exchanger, and then continuously cleaned in a filter prior to usage in standalone as well as networked power systems.
Owner:COMMUNITY POWER CORP

Regenerative fuel cell technology

For a mobile fuel cell system a narrow-gap modular approach allows reforming to be performed in the same architecture as the fuel cell. A regenerative fuel cell operates much like a battery using electrical power to produce hydrogen and oxygen. The preferred mode of using the regenerative fuel cell is as a battery charger since this application is able to use a much smaller fuel cell than is required to power the vehicle. A novel equilibrating tank between the electrolysis oxygen and hydrogen tanks allows pressurized oxygen and hydrogen to be used without mechanical compression equipment.
Owner:SUPPES GALEN J

Extraction with fractionation of oil and proteinaceous material from oleaginous material

Methods for selective extraction and fractionation of algal lipids and algal products are disclosed. A method of selective removal of products from an algal biomass provides for single and multistep extraction processes which enable efficient separation of algal components. Among these components are neutral lipids synthesized by algae, which are extracted by the methods disclosed herein for the production of renewable fuels.
Owner:HELIAE DEVMENT

Process for producing a renewable fuel in the gasoline or jet fuel range

Processes for producing hydrocarbons in the gasoline and jet fuel range. The processes involve the thermal decarboxylation of fatty acids, which can be derived from the hydrolysis of triglycerides, which triglycerides can be vegetable oils, animal fats, or combinations thereof. The resulting hydrocarbons can be hydrocracked, and, optionally, isomerized and / or hydrotreated, to yield hydrocarbons in the jet fuel or gasoline range. Where the resulting hydrocarbons include olefinic double bonds, they can alternatively be combined with low molecular weight olefins, and subjected to olefin metathesis to yield hydrocarbons in the jet fuel or gasoline range.
Owner:BRADIN DAVID

Nitrogen-doped carbon nanotube/Co composite catalyst and preparation method and application thereof

The invention belongs to the field of preparation and application of energy source materials and discloses a nitrogen-doped carbon nanotube / Co composite catalyst and a preparation method and application thereof. The preparation method includes: 1), respectively preparing melamine, cobalt salt and P123 into water solutions; 2), adding the melamine solution into the P123 solution, stirring for mixing, adding the cobalt salt solution, stirring for mixing, performing ultrasonic treatment, and heating while stirring until water is evaporated to obtain a precursor material; 3), pre-calcining the precursor material at 200-400 DEG C in an inert gas atmosphere, calcining at 450-600 DEG C and at 750-900 DEG C respectively, using an acid solution for soaking, cleaning, and drying to obtain the composite catalyst. The catalyst is high in oxygen reduction and oxygen evolution catalytic activity and stability and has high hydrogen evolution catalytic activity and stability in an acidic condition. The preparation method is simple, extensive in raw material source, low in cost and suitable for large-scale production. The composite catalyst is used in the field of integrated regenerative fuel cells.
Owner:SOUTH CHINA UNIV OF TECH

Selective extraction of proteins from freshwater or saltwater algae

Methods for selective extraction and fractionation of algal proteins from an algal biomass or algal culture are disclosed. A method of selective removal of products from an algal biomass provides for single and multistep extraction processes which allow for efficient separation of algal proteins. These proteins can be used as renewable sources of proteins for animal feedstocks and human food. Further, lipids remaining in the algal biomass after extraction of proteins can be used to generate renewable fuels.
Owner:HELIAE DEVMENT

System and sub-systems for production and use of hydrogen

A method for optimizing the efficiency of a solar powered hydrogen generation system is disclosed. The system utilizes photovoltaic modules and a proton exchange membrane electrolyzer to split water into hydrogen and oxygen with an efficiency greater than 12%. This high efficiency for the solar powered electrolysis of water was obtained by matching the voltage generated by photovoltaic modules to the operating voltage of the electrolyzer. Optimizing PV-electrolysis systems makes solar generated hydrogen less expensive and more practical for use as an environmentally clean and renewable fuel.
Owner:GM GLOBAL TECH OPERATIONS LLC

Selective extraction of proteins from freshwater algae

InactiveUS20110196131A1BiofuelsAnimal feeding stuffLipid formationFreshwater algae
Methods for selective extraction and fractionation of algal proteins from an algal biomass or algal culture are disclosed. A method of selective removal of products from an algal biomass provides for single and multistep extraction processes which allow for efficient separation of algal proteins. These proteins can be used as renewable sources of proteins for animal feedstocks and human food. Further, lipids remaining in the algal biomass after extraction of proteins can be used to generate renewable fuels.
Owner:HELIAE DEVMENT

Selective extraction of proteins from saltwater algae

Methods for selective extraction and fractionation of algal proteins from an algal biomass or algal culture are disclosed. A method of selective removal of products from an algal biomass provides for single and multistep extraction processes which allow for efficient separation of algal proteins. These proteins can be used as renewable sources of proteins for animal feedstocks and human food. Further, lipids remaining in the algal biomass after extraction of proteins can be used to generate renewable fuels.
Owner:HELIAE DEVMENT

Energy crops for improved biofuel feedstocks

The present invention is directed to improved systems and methods for reducing costs and increasing yields of cellulosic ethanol. In particular, the present invention provides plants genetically transformed for increased biomass, expression of lignocellulolytic enzymes, and simplification of harvesting and downstream processing. Also provided are methods for using these transgenic plants in the production of clean, marketable feedstocks for production of renewable fuels and chemicals and in other applications including phytoremediation.
Owner:EDENSPACE SYST CORP

Integrated renewable energy system

A system and method are disclosed comprising coupling a compression ignition engine (17) to an AC electrical generator (18) and / or a DC hompolar generator (19), wherein the homopolar generator (19) produces an electric current which is used to electrolyse water into hydrogen and oxygen. The hydrogen from the water electrolysis process may be used as a renewable fuel, either in the form of a gaseous fuel or a reactant in a fuel cell. The oxygen from the water electrolysis unit (23) may be used to produce an oxygen enriched combustion atmosphere in the engine (17). The oxygen may optionally be used as a reactant, along with the hydrogen, in a fuel cell.
Owner:H EMPOWER CORP

Hydroxyl oxidize iron-nickel-iron hydrotalcite integrated oxygen evolution electrode and preparation method and application thereof

The invention relates to a hydroxyl oxidize iron-nickel-iron hydrotalcite integrated oxygen evolution electrode applicable to alkaline mediums and a preparation method and application thereof. The electrode is applicable to the oxygen evolution reaction in the water-electrolytic hydrogen making process under catalytic alkaline conditions. The hydroxyl oxidize iron-nickel-iron hydrotalcite integrated oxygen evolution electrode and the preparation method and application thereof have the advantages as follows: the nickel-iron hydroxide integrated electrode is shape-controlled, the preparation process is simple and under mild conditions, and the electrode can be used for a water electrolytic tank for hydrogen production from water splitting under external bias potentials; the prepared hydroxyloxidize iron-nickel-iron hydrotalcite integrated oxygen evolution electrode further has a better performance when being used in an alkaline solid polymer electrolyte (AEM) water electrolytic tank; and besides, an extensive utilization value in achieved in regenerative fuel cells (RFC), photoelectro-catalytic devices and electrolytic hydrogen generators.
Owner:DALIAN INST OF CHEM PHYSICS CHINESE ACAD OF SCI

Power generation system using a combustion system and a fuel cell

A regenerative fuel cell is combined with a combustion engine such as a Pulse Detonation Engine (PDE) to create a closed-loop power generation system. Stored hydrogen and oxygen are used by the regenerative fuel cell, and by the combustion engine, in which the reaction of the hydrogen and oxygen produces water in the gas phase (steam). The steam is used to generate work from a turbine shaft, which is used to drive a propulsion system for the marine vessel. After the steam passes through the turbine, the steam is cooled back to liquid water by a condenser, and stored with the water produced by the regenerative fuel cell. The stored water can be converted back into hydrogen and oxygen by using electrical power external to the closed-loop system. After regeneration of the water into hydrogen and oxygen, the closed-loop power system would be ready for operation again.
Owner:LOCKHEED MARTIN CORP

Eolic marine electrical generator geem

In short, the Eolic Marine Electrical Generator "GEEM" is an extraordinary invention used for capturing the huge impulse force of water or wind, to generate mechanical energy and to transform the mechanical energy into electrical energy, clean and ecological, without consuming vital oxygen thanks to the invention of immense split, self-regulating panels, radially fixed in dihedral angle to a rotary central shaft, panels which capture by shock the inexhaustible energy of the wind, the waves or the ocean currents; or fixed on rotary or flying machines of high speed, with panels formed at the same time by oscillating vanes that at a certain time of a turn of 360° will face the natural energy as a single group or panel, capturing therefrom the impulse force and converting it into rotary movement through the central rotary shaft. Said vanes in other rotation, by oscillation, will divide the panel and will align themselves with the natural vector, permitting its free passage, eliminating the turning resistance of the panel against water or wind and generating a constant rotation movement, independent of the direction of water or wind, and then transforming said mechanical energy into electrical energy by existing conventional means. The invention will allow men to renew their resources and to obtain electrical energy from anywhere in the planet such as cities, countryside, deserts, forests, mountains, seas, floating cities or spaces such as the Arctic and the Antarctic, neither polluting the environment, nor depending on costly networks or non-renewable inputs. The invention will also generate electrical energy on fleets, land vehicles or airship without consuming non-renewable fuel or destroying oxygen. Moreover, this invention replaces the internal combustion engines by eolic electrical motors, changing the scenery of the modern world and recovering the ozone lost in the Antarctic. And this invention will also be used when men in future colonize planets, without rivers or seas but with plenty of wind, to generate electrical energy without polluting this new vital space of the human race.
Owner:PACHECO PEDRO SAAVEDRA

Production of renewable biofuels

Renewable fuels are produced in commercial quantities and with enhanced efficiency by integrating a bio-oil production system with a conventional petroleum refinery so that the bio-oil is co-processed with a petroleum-derived stream in the refinery. The techniques used to integrate the bio-oil production system and conventional petroleum refineries are selected based on the quality of the bio-oil and the desired product slate from the refinery.
Owner:MARD INC

Method for making renewable fuels

Multiple catalytic processing stations enable a method for producing volatile gas streams from biomass decomposition at discrete increasing temperatures. These catalytic processing stations can be programmed to maximize conversion of biomass to useful renewable fuel components based on input feedstock and desired outputs.
Owner:COOL PLANET ENERGY SYST

Renewable engine fuel

The present invention provides fully renewable engine fuels derived completely from biomass sources. The fully renewable engine fuel is comprised of one or more low carbon number esters, one or more pentosan-derivable furans, one or more aromatic hydrocarbon, one or more C4-C10 straight chain alkanes derivable from polysaccharides, and one or more bio-oils. In addition, the fuel may contain triethanolamine. Such a lower octane renewable fuel may be utilized, for example, in automobile fuel, 100 LL aviation fuel applications, and turbine engine applications. These ethanol-based, fully renewable fuels may be formulated to have a wide range of octane values and energy, and may effectively be used to replace 100LL aviation fuel (known as AvGas), as well as high octane, rocket, diesel, and turbine engine fuels.
Owner:SWIFT ENTERPRISES

Advanced cellulosic renewable fuels

The invention relates to a process to manufacture advanced cellulosic gasolines. Dilute organic acids derived from pyrolized biomass are converted to their corresponding alcohols in a stand-alone hydrodeoxygenation unit followed by membrane pervaporation step to remove water. The alcohol product is blended directly into a neat hydrocarbon fuel basestock to make unadditized gasoline.
Owner:PHILLIPS 66 CO

Renewable Engine Fuel

The present invention provides fully renewable engine fuels derived completely from biomass sources. In one embodiment the fully renewable engine fuel is comprised of one or more low carbon number esters, one or more pentosan-derivable furans, one or more aromatic hydrocarbon, one or more C4-C10 straight chain alkanes derivable from polysaccharides, and one or more bio-oils. In addition, the fuel may contain triethanolamine. Such a lower octane renewable fuel may be utilized, for example, in automobile fuel, 100 LL aviation fuel applications, and turbine engine applications. These ethanol-based, fully renewable fuels may be formulated to have a wide range of octane values and energy, and may effectively be used to replace 100 LL aviation fuel (known as AvGas), as well as high octane, rocket, diesel, and turbine engine fuels. In another embodiment, there is provided a synthetic high octane aviation fuel comprising isopentane and mesitylene, and process of producing same from a biomass.
Owner:SWIFT ENTERPRISES

Extraction of neutral lipids by a two solvent method

A method for separating neutral lipids from plant material, in particular, intact algal cells, using an amphipathic solvent set and a hydrophobic solvent set. Some embodiments include dewatering intact algal cells and then extracting neutral lipids from the algal cells. The methods provide for single and multistep extraction processes which allow for efficient separation of algal neutral lipids from a wet algal biomass while avoiding emulsification of extraction mixtures. The neutral lipids are removed after first removing a polar lipid fraction and a protein fraction. These neutral lipids can be used to generate renewable fuels as well as food products and supplements.
Owner:HELIAE DEVMENT

Carbohydrates upgrading and hydrotreating to hydrocarbons

Technologies to convert biomass to liquid hydrocarbon fuels are currently being developed to decrease our carbon footprint and increase use of renewable fuels. Since sugars / sugar derivatives from biomass have high oxygen content and low hydrogen content, coke becomes an issue during zeolite upgrading to liquid hydrocarbon fuels. A process was designed to reduce the coke by co-feeding sugars / sugar derivatives with a saturated recycle stream containing hydrogenated products.
Owner:PHILLIPS 66 CO

Method for making renewable fuels

Multiple catalytic processing stations enable a method for producing volatile gas streams from biomass decomposition at discrete increasing temperatures. These catalytic processing stations can be programmed to maximize conversion of biomass to useful renewable fuel components based on input feedstock and desired outputs.
Owner:COOL PLANET ENERGY SYST

Extraction of polar lipids by a two solvent method

A method for separating polar lipids from plant material, in particular, intact algal cells, using an amphipathic solvent set and a hydrophobic solvent set. Some embodiments include dewatering intact algal cells and then extracting polar lipids from the algal cells. The methods provide for single and multistep extraction processes which allow for efficient separation of algal polar lipids from a wet algal biomass while avoiding emulsification of extraction mixtures. These polar lipids are high value products which can be used as surfactants, detergents, and food additives. Neutral lipids remaining in the algal biomass after extraction of polar lipids can be used to generate renewable fuels.
Owner:HELIAE DEVMENT

Production of renewable biofuels

A process and system for separating and upgrading bio-oil into renewable fuels is provided. The process comprises separating bio-oil into a light fraction and heavy fraction based on their boiling points. The heavy fraction is then subjected to hydrotreatment, while the light fraction is not subjected to hydrotreatment. At least a portion of the un-hydrotreated light fraction and at least a portion of the hydrotreated heavy fraction are blended with petroleum-derived gasoline to thereby provide a renewable gasoline, and at least a portion of the hydrotreated heavy fraction is blended with petroleum-derived diesel to thereby provide a renewable diesel.
Owner:MARD INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products