Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2918 results about "Flow battery" patented technology

A flow battery, or redox flow battery (after reduction–oxidation), is a type of electrochemical cell where chemical energy is provided by two chemical components dissolved in liquids contained within the system and separated by a membrane. Ion exchange (accompanied by flow of electric current) occurs through the membrane while both liquids circulate in their own respective space. Cell voltage is chemically determined by the Nernst equation and ranges, in practical applications, from 1.0 to 2.2 volts.

Novel vanadium halide redox flow battery

InactiveUS20060183016A1Avoid excessive bromine generationStabilise the bromine producedCharging stationsCell electrodesRedoxPhysical chemistry
A prior to charge vanadium halide redox cell, a vanadium halide redox cell which is at a state of charge selected from the group consisting of a zero state of charge and a near zero state of charge and vanadium halide redox cell which are fully charged and partially charged are described. The prior to charge vanadium halide redox cell comprises a positive half cell containing a positive half cell solution comprising a halide electrolyte, vanadium (III) halide and vanadium (IV) halide, a negative half cell containing a negative half cell solution comprising a halide electrolyte, vanadium (III) halide and vanadium (N) halide wherein the amounts of vanadium (III) halide, vanadium (IV) halide and halide ions in the positive and negative half cell solutions are such that in a first charging step comprising charging the prior to charge vanadium halide redox cell, a vanadium halide redox cell having a state of charge selected from the group consisting of a zero state of charge and a near zero state of charge comprising predominantly vanadium (N) halide in the positive half cell solution and predominantly V(III) halide in the negative half cell solution can be prepared. The vanadium halide redox cell which is at a state of charge selected from the group consisting of a zero state of charge and a near zero state of charge comprises a positive half cell containing a positive half cell solution comprising a halide electrolyte and a vanadium halide which is predominantly vanadium (N) halide, a negative half cell containing a negative half cell solution comprising a halide electrolyte and a vanadium halide which is predominantly vanadium (III) halide wherein the amount of vanadium (N) halide in the positive half cell solution and the amount of vanadium (III) halide in the negative half cell solution are such that the vanadium halide redox cell is at a state of charge selected from the group consisting of a zero state of charge and a near zero state of charge. The vanadium halide redox cell which is fully charged comprises a positive half cell containing a positive half cell solution comprising a halide electrolyte, a polyhalide complex, vanadium (IV) halide and vanadium (V) halide, a negative half cell containing a negative half cell solution comprising a halide electrolyte and vanadium (II) halide wherein the molar concentration of vanadium (V) and polyhalide complex:molar concentration of vanadium (II) halide is about stoichiometrically balanced. The vanadium halide redox cell which is partially charged comprises a positive half cell containing a positive half cell solution comprising a halide electrolyte, a polyhalide complex, vanadium (IV) halide and vanadium (V) halide, a negative half cell containing a negative half cell solution comprising a halide electrolyte, vanadium (II) halide and vanadium (III) halide wherein the number of moles of moles of polyhalide complex and vanadium (V): number of moles of vanadium (II) halide is about stoichiometrically balanced.
Owner:NEWSOUTH INNOVATIONS PTY LTD

Organic phase dual flow battery

The present invention discloses an organic phase dual flow battery, which comprises at least a battery monomer, wherein the battery monomer comprises a positive electrode and a negative electrode, the positive electrode and the negative electrode are respectively connected with a positive electrode terminal and a negative electrode terminal, a separation membrane is arranged between the positive electrode and the negative electrode, a positive electrode flow channel is arranged between the separation membrane and the positive electrode, a negative electrode flow channel is arranged between the separation membrane and the negative electrode, the positive electrode flow channel is filled with a positive electrode electrolyte liquid, the negative electrode flow channel is filled with a negative electrode electrolyte liquid, both ends of the positive electrode flow channel are respectively communicated with a positive electrode electrolyte liquid storage tank, both ends of the negative electrode flow channel are respectively communicated with a negative electrode electrolyte liquid storage tank, an active substance of the positive electrode electrolyte liquid is ferrocene or a derivative thereof, and an active substance of the negative electrode electrolyte liquid is anthraquinone or a derivative thereof. The organic phase dual flow battery of the anthraquinone or the derivative thereof / the ferrocene or the derivative thereof has advantages of simple manufacturing process, low cost, high cycle life and the like, has characteristics of high energy density, high power density and high energy utilization efficiency, and can be widely used in electric power, transportation, electronics and other industries.
Owner:TSINGHUA UNIV +1

Method for preparing electrode material for all-vanadium flow battery

The invention relates to the field of cell manufacturing and energy storage, and concretely relates to a method for preparing an electrode material for an all-vanadium flow battery. The method comprises the following steps: preparing a composite spinning liquid needed by experiments, uniformly mixing carbon nanotubes with the electrode catalysis, graphite oxide, a transition metal oxide or a transition metal nitrate or halide, and the like with the composite spinning liquid, preparing a raw electrode material through a static spinning process, preoxidizing an electrode material precursor (the raw electrode material) through utilizing a vacuum/atmosphere furnace (at 200-500DEG C), and carbonizing in an inert atmosphere (at 800-1500DEG C) to obtain the needed electrode material. The obtained electrode material can be subjected to charge and discharge tests of the cell after cleaning and drying. According to the vanadium cell electrode material prepared through adopting the method of the invention, the carbon fiber diameter is in the nanometer level, the specific surface area is substantially higher than specific surface areas of traditional used electrode materials, and the oxygen content of the fiber surface is greatly improved because of the late preoxidation processing.
Owner:INST OF METAL RESEARCH - CHINESE ACAD OF SCI

Preparation method of metal-organic framework material/polymer composite proton exchange membrane

The invention relates to a preparation method of a metal-organic framework material / polymer composite proton exchange membrane. The method is characterized by comprising the following steps: dissolving a polymer matrix and a certain amount of metal-organic framework material with an organic solvent and carrying out ultrasonic dispersion to form a uniform membrane liquid; coating the flat and smooth surface of a glass plate with the obtained membrane liquid, and then removing the organic solvent to obtain a composite membrane; and carrying out vacuum drying on the composite membrane for 24 hours to prepare the composite proton exchange membrane for an all-vanadium redox flow battery. The composite proton exchange membrane is smooth in surface; the internal structure of the membrane is regular; the membrane is uniform in thickness and free of a defect; and the thickness is 10-300 microns. The composite proton exchange membrane provided by the invention has excellent vanadium ion permeation blocking ability, keeps excellent proton transfer performance, overcomes the defect of relatively high vanadium ion permeability of an existing all-vanadium redox flow battery membrane, and has the advantages of being simple in preparation process, high in proton transmittance, excellent in vanadium blocking property, excellent in oxidative resistance, easy to industrially amplify and the like.
Owner:INST OF CHEM CHINESE ACAD OF SCI
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products