Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

15409 results about "Membrane configuration" patented technology

Membrane configurations. In the membrane field, the term module is used to describe a complete unit composed of the membranes, the pressure support structure, the feed inlet, the outlet permeate and retentate streams, and an overall support structure.

Sealed surgical access device

InactiveUS7052454B2” laparoscopy is greatly facilitatedFulfil requirementsEar treatmentCannulasCouplingEngineering
A surgical access device is adapted to facilitate access through an incision in a body wall having an inner surface and an outer surface, and into a body cavity of a patient. The device includes first and second retention members adapted to be disposed in proximity to the outer surface and the inner surface of the body wall, respectively. A membrane extending between the two retention members forms a throat which is adapted to extend through the incision and form a first funnel extending from the first retention member into the throat, and a second funnel extending from the second retention member into the throat. The throat of the membrane has characteristics for forming an instrument seal in the presence of an instrument and a zero seal in the absence of an instrument. The first retention member may include a ring with either a fixed or variable diameter. The ring can be formed in first and second sections, each having two ends. Couplings can be disposed between the ends to accommodate variations in the size of the first retention member. The first retention member can also be formed as an inflatable toroid, a self-expanding foam, or a circumferential spring. A plurality of inflatable chambers can also provide the surgical access device with a working channel adapted for disposition across the body wall. A first retention member with a plurality of retention stations functions with a plurality of tethers connected to the membrane to change the shape of the membrane and the working channel. A stabilizing platform can be used to support the access device generally independent of any movement of the body wall.
Owner:APPL MEDICAL RESOURCES CORP

Membrane suitable for use in an analyte sensor, analyte sensor, and associated method

A multifunctional membrane is provided. The multifunctional membrane is suitable for use in an analyte sensor. In a particular application, the multifunctional membrane may be used in connection with an amperometric biosensor, such as a transcutaneous amperometric biosensor. Some functions of the membrane are associated with properties of membrane itself, which is comprised of crosslinked polymers containing heterocyclic nitrogen groups. For example, the membrane, by virtue of its polymeric composition, may regulate the flux of an analyte to a sensor. Such regulation generally improves the kinetic performance of the sensor over a broad range of analyte concentration. Other functions of the membrane are associated with functional components, such as a superoxide-dismutating/catalase catalyst, either in the form of an enzyme or an enzyme mimic, that can be bound to the scaffold provided by the membrane. The effect of any such enzyme or enzyme mimic is to lower the concentration of a metabolite, such as superoxide and/or hydrogen peroxide, in the immediate vicinity of the sensing layer of the biosensor. Lowering the concentrations of such metabolites, which are generally deleterious to the function of the sensor, generally protects or enhances biosensor integrity and performance. The membrane is thus an important tool for use in connection with analyte sensors, amperometric sensors, biosensors, and particularly, transcutaneous biosensors. A membrane-covered sensor and a method for making same are also provided.
Owner:ABBOTT DIABETES CARE INC

Closed system artificial intervertebral disc

An artificial intervertebral disc and disc nucleus are described herein having chambers and dampening members. The dampening members may be within or outside of the main body of the device. The chambers may be filled with a suitable liquid, gas, or both, and separated by valves to regulate flow of fluid between chambers, within a dampening member, between the main body and dampening member, or all of the above. Chambers may be filled with responsive hydrogels, EPAM, or other suitable materials, and the device may have activation plates or members, a strain gauge, a pressure sensor, or other means for detecting changes in the materials and / or triggering desired changes in the materials in order to mimic the behavior of a healthy native disc or disc nucleus. A control system may be in communication with the device for receiving feedback and delivering stimuli to initiate desired changes in the fluids or other materials. Membranes may be of variable permeability and may be metallized to ensure as low permeability as possible. Dampening members may be filled during manufacture with carbon dioxide or other suitable gas which may be in a supercritical state and allowed to return to ambient temperature and gaseous state or by other means. Methods of manufacture, delivery of the artificial disc and related structures, and methods of treatment are also described.
Owner:SYNECOR LLC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products