Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

24057 results about "High concentration" patented technology

Catalysis and micro-electrolysis combined technology for high-concentration refractory organic wastewater

The invention relates to a catalysis and micro-electrolysis combined technology for high-concentration refractory organic wastewater; the organic wastewater is collected to an adjusting tank and enters an air floatation tank for air floatation treatment to remove part of the organic matters after the adjustment of water volume and water quality; the scruff is collected or recovered; the wastewatergoes through Ph adjustment and then enters a catalytic iron-carbon and micro-electrolysis unit to improve the biochemical quality; the effluent goes through Ph adjustment and then enters a sedimentation tank; the effluent of the sedimentation tank adopts anoxic-aerobic biochemistry treatment to remove the organic matters and ammonia nitrogen and then is emitted after reaching the standard; and the filler of the catalytic iron-carbon and micro-electrolysis unit comprises iron, carbon and a catalyst, wherein the mass ratio of the iron, carbon and catalyst is 1: (0.3-1.5): (0.01-0.5). The invention can effectively improve the micro-electrolysis electrochemical reaction efficiency and the degrading capability to the organic matters, and reduce the wastewater treatment cost with convenient technological operation.
Owner:CENT SOUTH UNIV

Strain balanced nitride heterojunction transistors

A nitride based heterojunction transistor includes a substrate and a first Group III nitride layer, such as an AlGaN based layer, on the substrate. The first Group III-nitride based layer has an associated first strain. A second Group III-nitride based layer, such as a GaN based layer, is on the first Group III-nitride based layer. The second Group III-nitride based layer has a bandgap that is less than a bandgap of the first Group III-nitride based layer and has an associated second strain. The second strain has a magnitude that is greater than a magnitude of the first strain. A third Group III-nitride based layer, such as an AlGaN or AlN layer, is on the GaN layer. The third Group III-nitride based layer has a bandgap that is greater than the bandgap of the second Group III-nitride based layer and has an associated third strain. The third strain is of opposite strain type to the second strain. A source contact, a drain contact and a gate contact may be provided on the third Group III-nitride based layer. Nitride based heterojunction transistors having an AlGaN based bottom confinement layer, a GaN based channel layer on the bottom confinement layer and an AlGaN based barrier layer on the channel layer, the barrier layer having a higher concentration of aluminum than the bottom confinement layer, are also provided. Methods of fabricating such transistor are also provided.
Owner:CREE INC

Method for reducing emissions from evaporative emissions control systems

Disclosed is a method for sharply reducing diurnal breathing loss emissions from automotive evaporative emissions control systems by providing multiple layers, or stages, of adsorbents. On the fuel source-side of an emissions control system canister, high working capacity carbons are preferred in a first canister (adsorb) region. In subsequent canister region(s) on the vent-side, the preferred adsorbent should exhibit a flat or flattened adsorption isotherm on a volumetric basis and relatively lower capacity for high concentration vapors as compared with the fuel source-side adsorbent. Multiple approaches are described for attaining the preferred properties for the vent-side canister region. One approach is to use a filler and/or voidages as a volumetric diluent for flattening an adsorption isotherm. Another approach is to employ an adsorbent with the desired adsorption isotherm properties and to process it into an appropriate shape or form without necessarily requiring any special provision for dilution. The improved combination of high working capacity carbons on the fuel source-side and preferred lower working capacity adsorbent on the vent-side provides substantially lower diurnal breathing emissions without a significant loss in working capacity or increase in flow restriction compared with known adsorbents used in canister configurations for automotive emissions control systems.
Owner:INGEVITY SOUTH CAROLINA
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products