Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1716 results about "Heat distribution" patented technology

Systems, methods, and compositions for production of synthetic hydrocarbon compounds

A process and system for producing hydrocarbon compounds or fuels that recycle products of hydrocarbon compound combustion—carbon dioxide or carbon monoxide, or both, and water. The energy for recycling is electricity derived from preferably not fossil based fuels, like from nuclear fuels or from renewable energy. The process comprises electrolysing water, and then using hydrogen to reduce externally supplied carbon dioxide to carbon monoxide, then using so produced carbon monoxide together with any externally supplied carbon monoxide and hydrogen in Fischer-Tropsch reactors, with upstream upgrading to desired specification fuels—for example, gasoline, jet fuel, kerosene, diesel fuel, and others. Energy released in some of these processes is used by other processes. Using adiabatic temperature changes and isothermal pressure changes for gas processing and separation, large amounts of required energy are internally recycled using electric and heat distribution lines. Phase conversion of working fluid is used in heat distribution lines for increased energy efficiency. The resulting use of electric energy is less than 1.4 times the amount of the high heating value of combustion of so produced hydrocarbon compounds when carbon dioxide is converted to carbon monoxide in the invention, and less than 0.84 when carbon monoxide is the source.
Owner:FUELCOR LLC

Chemical vapor deposition apparatus and method

Apparatus such as a furnace muffle (11) for use in a CVI / CVD furnace. The apparatus includes a bottom (12), a top (13), and an outer wall (3) defining an interior space (1) in the apparatus, and a passive heat distribution element (7, 9) located within the interior space (1) and apart from the outer wall (3). Preferably, the bottom (12) and top (12) include perforated plates and the outer wall (3) is cylindrical in shape and all are made of graphite or carbon-carbon composite material and the passive heat distribution element (7, 9) is cylindrical in shape and includes graphite or carbon-carbon composite discs having no spacers therebetween. Also, a method for densifying a porous carbon preform (5), which method includes the steps of: (a) providing the apparatus (11); (b) charging the apparatus (11) with a plurality of stacks of annular porous carbon preforms (5), the preforms being separated from one another by spacers (15); (c) locating the charged apparatus (11) in a furnace at a temperature in the range of 950-1100° C. and a pressure in the range of 5-40 torr; and (d) circulating a natural gas reactant blended with up to 15% propane through the apparatus for 150-900 hours. Also, a batch of carbon-carbon composite preforms made by the method, wherein the density of the batch of preforms is at least 0.5 g / cc higher than the density of a batch of preforms made by an otherwise identical process in which the apparatus does not contain a passive heat distribution element located within its interior. The preforms may be configured as aircraft landing system brake discs or racing car brake discs.
Owner:HONEYWELL INT INC

Method of extermination utilizing heated air

A method of exterminating organisms is provided utilizing heated circulating air. First, a determination is made as to which enclosed areas of the building or other structure are to undergo extermination. This step defines an application zone. Next, a desired elevated temperature limit is established for heated air that is to be circulated through the application zone. Heaters are provided in airflow communication with the application zone, and circulation fans are positioned throughout the application zone to move the heated air for proper heat distribution. The heaters utilize an amount of recirculated air already present in the application zone to cut down on the amount of energy needed to raise the air temperature within the application zone towards the desired elevated temperature limit, and to eliminate the need for high CFM airflow heaters to achieve air temperature elevation. The temperature at various nodes within the application zone may be monitored to allow personnel to redirect circulating airflow within the application zone to balance out areas of higher air temperature with areas of lower air temperature. The method takes advantage of convection heat transfer to raise the temperature evenly within an application zone, minimizing temperature stratification which could result in ineffective pest extermination and/or damage to equipment and facilities.
Owner:IND FUMIGANT
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products